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THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS FORMED 

IN BRITTLE FRACTURE 

By G.N. Barenblatt (Moscow) 

This article gives an account, from a single general point of 

view, of the basic problem formulations in the theory of equilibrium 

cracks and of the results obtained in this theory. 

The theory of cracks is a rather new field of mechanics and, 

as a result, there are no monographs containing surveys of this 

problem. Consequently, it seemed advisable to present the principles 

of this theory in greater detail. 

The first and second sections of this article consistute an 

introduction to and a brief outline of the development of the theory 

of equilibrium cracks. The third section considers the structure 

of the edge of the equilibrium crack in a brittle solid. The fourth 

section presents the basic hypotheses and gives a general formula- 

tion of the problem of equilibrium cracks; experimental confirma- 

tions of this theory of cracking are considered. The fifth section 

deals with a number of specific problems of the theory of equilibrium 

cracks; problems of resistance to cracking are considered. Finally, 

the sixth section deals with the problem of wedging, which is im- 

portant for the theory of cracks, and briefly considers the results 

obtained which have a bearing on the dynamics of cracking. 

In writing this article, the author has attempted to avoid 

repetition of available surveys of various aspects of brittle frac- 
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ture. By Its nature, this survey properly touches on the theory 

of cracking, which Is the mathematical theory of brittle fracture. 

In this connection, the voluminous available experimental reports 

are cited only insofar as they are necessary for confirmation of 

the theory advanced and for determining its limits of applicability. 

„      In contrast to the mathematical theory, experimental studies of 

brittle fracture are not once considered in the appropriate surveys 

and monographs. In addition, these sources ignore or hardly treat 

at all of problems related only to mathematical techniques for 

solving problems of elasticity theory. Nor do they deal with the 

formation of cracks. In attempting to assemble all accounts from 

a unified point of view, the author has occasionally permitted 

deviation from the original treatises in citing isolated specific 

results obtained by other investigators. 

The author is indebted to Ya.V. Zel'dovich and Yu.N. Rabotnov 

,      (Academy of Sciences USSR) and S.S. Grigoryan of the MGU (Moscow 

State University) for their unflagging interest and attention to 

his work on cracks and for a number of valuable suggestions. He 

remembers with gratitude his helpful discussions with S.A. Khristiano- 

vich (Academy of Sciences USSR). The author considers it his duty 

to express his thanks to Professor G. Kyurt', the editor-in-chief 

of the publication Advances in Applied Mechanics, and Professor 

G.G. Chernyy (MGU) for their obliging assistance in writing this 

article. The author also notes with gratitude the help of I.A. 

Markuzon in compiling the bibliography for the present survey. 

1. Introduction 

The subject matter of the theory of equilibrium cracks is the 

Study of equilibrium In solids containing cracks. 

Let us consider a solid which contains cracks (Fig. l) and 
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which is In equilibrium under the 

action of some system of loads. 

The solid is considered to be 

capable of withstanding any finite 

stresses and to be ideally brittle, 

i.e., to retain the property of 

linear elasticity to the fracture 

point; the feasibility of using an ideally brittle solid as a model 

for a real material will be considered below. 

The spread of the crack (the distance between the opposing 

crack surfaces) is always much less than the length of the crack. 

Consequently, cracks can be regarded as surfaces at which disrup- 

tion of the continuity of the material occurs, i.e., surfaces at 

which discontinuities of the shear vector occur. 

Unless otherwise noted, we shall deal below with the two- 

dimensional normal-tensile-fracture cracks, i.e., portions of a 

plane which are bounded by closed curves (the boundaries of the 

cracks) and are subject to fracture only along the normal components 

of the shear vector. We may deal with the case where fracture oc- 

curs along the tangential slip components on the fracture surfaces 

of an ideally brittle body In the same fashion as for normal- 

rupture cracks. 

It might be supposed that research on the equilibrium of elas- 

tic bodies containing cracks could be carried out by the general 

methods of elasticity theory, as is done for bodies containing 

cavities (Fig. 2). However, there is a basic difference between 

these two problems. Even when the loads acting on the body are 

varied considerably, the shape of the cavities changes only slightly, 

At the same time, cracks whose surfaces also form a section of 
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the boundary of the solid can be widened sharply With even a small 

increase in the load acting on the body (see Pigs. 1 and 2, where 

the broken lines denote the additional loads and the corresponding 

positions of the boundaries of the body) . 

Thus, one of the basic premises of the classical linear theory 

of elasticity is not satisfied for problems in the theory of crack- 

ing, namely the assumption that the change in the boundaries of 

the body under load is small, which makes it possible to assume that 

the boundary conditions are observed on the surfaces of a nonde- 

formed body. This makes the problem of equilibrium in a body con- 

taining cracks essentially nonlinear, in contrast to the traditional 

problems of elasticity theory. In problems of crack theory, it is 

necessary to determine from the equilibrium conditions not only the 

distribution of stresses and strains but also the limits of the 

region for which the equilibrium equations can be solved. 

As we know, nonlinear problems of this type ("problems with 

unknown limits") have already long been encountered in various 

branches of mathematical physics. It is sufficient to note the 

theory of the jet and the theory of finite-amplitude waves in 

hydrodynamics, the theory of flow past a body in the presence of 

shock waves in gas dynamics, Stefan's law of freezing In the theory 

of heat transfer, etc. The principal difficulty in these problems 

is associated with finding the limits of the region in which the 

solution is sought. The location of the crack surfaces for a given 

applied load presents exactly the same basic problem in the theory 

of equilibrium cracks. 

The differential equilibrium equations and the usual boundary 

conditions of elasticity theory are fundamentally unable to provide 

solutions to these problems without consideration of additional 
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factors. This may be seen from the fact that it Is formally possible 

to set up a solution for the equations which would satisfy the 

usual boundary conditions without even specifying the crack sur- 

faces. Analysis of the formal solutions obtained in this case shows 

that, generally speaking, the tensile stresses a  normal to the 

surface of a crack are infinite on the circumference of the crack 

according to these solutions. More precisely, near an arbitrary 

spot on the circumference of the crack 

a — rjrj + a finite quantity.       (l.l) 

Here _s is the distance of a point of the body lying In the 

plane of the crack from the circumference of the crack; N is the 

"coefficient of stress intensity," whose magnitude depends on the 

applied loads, the shape of the crack outline, and the coordinates 

of the point of this outline being considered, but is independent 

of s. Here the form of the normal section of the deformed surface 

of the crack near its edge is unnaturally rounded (as in Fig. 3 

or somewhat differently; see detailed discussion below). 

Fig. 2. Fig. 3- 1) P. Fig. 4 

Generally speaking, however, there exist exceptional crack 

contours for which the stresses at the edges of the cracks are 

finite (N ■ 0) with a given load and the opposing surfacps of the 

cracks unite smoothly at the boundaries, so that the shape of the 

section of the crack surfaces near the edge is of the form shown 

in Fig. 4. it is possible to show that for such contours (and only 
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for such contours) the energy liberated with a small change In the 

contour of the crack In the vicinity of a given point equals zero. 

Hence It follows that equilibrium cracks can be bounded only by 

such contours. 

Thus, if all the loads acting on a body are given, the problem 

of the theory of equilibrium cracks is formulated in the following 

fashion. For a given distribution of the original cracks and a 

given system of forces acting on the body, it is necessary to deter- 

mine the stresses, deformations, and crack contours for the elastic 

body under consideration so as to satisfy the differential equilib- 

rium equations and boundary conditions, and to ensure that the 

stresses are finite or, which is the same thing, that the opposing 

banks of the crack outline unite smoothly. If the location of the 

initial cracks is not specified, the problem presented has a multi- 

valued solution, since by virtue of the model adopted, the body 

can withstand any finite stresses. This is natural, since one and 

the same load on the same body may produce no cracks at all, one 

crack, two cracks, etc. 

In the general case of curved cracks, their form is deter- 

mined not only by the load existing at the moment In question, but 

also by the history of the process by which the body was loaded. 

However, although the symmetry of ehe body and the monotonically 

increasing applied loads ensure the development of surface cracks, 

the contours of these cracks will be determined solely by the ]oad 

acting at the time. All results available in crack theory at the 

present time correspond to particular cases of this simplified 

statement of the problem. 

Generally speaking, it is necessary to include more than simply 

the load applied to a body in the system of forces acting on the 
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body. This is shown by the following example. Let us attempt to 

determine the contour of an equilibrium crack in the case of the 

load depicted in Fig. 1. If, In accordance with the usual methods 

of elasticity theory, we assume the surface of the crack to be 

free of stress, as Is the case for the surface shown In Fig. 2, we 

obtain a paradoxical result; however we select the contour of the 

crack, the tensile stress at its edge is always infinitely large. 

Consequently, there are no equilibrium cracks: at as small a frac- 

ture stress as you please, a body having a crack breaKs ir two! 

This obvious conflict with reality can be explained very simply 

Having primitively used a model of an elastic body, we did not 

study all the forces acting on the body. In order to construct an 

adequate theory of cracking, it has proven necessary — and this is 

one of the main differences between the problems of the theory of 

cracking and the traditional problems of elasticity theory — to 

consider the molecular cohesive forces acting in the vicinity of 

the crack contour where the distance between the opposing faces 

of the crack is small and they attract one another powerfully. 

Although, in principle, consideration of cohesive forces 

solves the problem, it seriously complicates research. The dif- 

ficulty lies in the fact that neither the distribution of cohesive 

forces over the surface of a crack nor even the dependence of the 

intensity of these forces on the distance between the opposing 

faces of the crack is known. In addition, the distribution of 

cohesive forces depends in general on the loais applied. However, 

if the cracks are not too small, there Is a way out of this dif- 

ficulty. The fact is that the intensity of the cohesive forces 

very rapidly reaches a high maximum approximating Young's modulus 

when the distance between the opposing faces of the cracks is in- 
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creased and then rapidly decreases after passing this maximum. Con- 

sequently, we can adopt two simplifying hypotheses. 

The first of these Is that the area of the section of the 

crack surface on which the cohesive forces act can be assumed 

negligibly small In comparison with the total area of the crack 

surface. 

According to our second hypothesis, the shape of the crack 

surface (and consequently, the local distribution of cohesive forces) 

in the vicinity of the points on the contour of the crack at which 

the cohesive forces are at maximum intensity does not depend on 

the applied load.* 

For example, the cohesive forces are at their maximum possible 

intensity for a given material under a given set of conditions at 

all points on the contour of a crack formed In the primary fracture 

of the material while the load is increased. For the majority of 

real materials under ordinary conditions, cracking is irreversible. 

If an Irreversible crack is formed with the help of an artificial 
> 

notch and without subsequent expansion or if it is produced on a 

reduction in the load from a crack that existed under a heavy load, 

the intensity of the cohesive forces at the contour of the crack 

will be less than the maximum possible value. The cohesive forces 

acting on the surface of a crack compensate applied fracture loads 

and ensure finite stresses and a smooth junction between the faces 

of the crack. With increasing fracture loads, the cohesive forces 

increase, adapting themselves in this sense to the Increasing ten- 

sile stresses. In this case, the crack docs not widen further until 

the maximum possible intensity of cohesive forces at the contour 

of the crack is achieved. Only when the maximum possible intensity 

of the cohesive forces is achieved at its contour does the crack 
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begin to develop.* 

The gradual development of the edge of a crack as the tensile 

load is increased is shown schematically in Fig. [5. 

If we use the first of the 

hypotheses given above, the mole- 

cular cohesive forces enter the 

picture under the conditions deter- 

mining the position of the contours 

of the cracks only in the form of 
Fig. 5. 

the integral 
K ■    G (l) tit [ JLSll 

Vt 1.2 

Here G(t) is the intensity of the cohesive forces acting in 

the vicinity of the crack margins, t is the distance along the sur- 

face of the crack, reckoned along the normal to its contour, and 

d is the width of the region in which the cohesive forces act. For 

points on the contour to which the second hypothesis is applicable, 

this integral is, for a given set of conditions (temperature, com- 

position and pressure of surrounding atmosphere, etc.), a constant 

for a given material and determines its resistance to the forma- 

tion of cracks. It can be shows that the value of K is simply re- 

lated to the surface tension T0 of the material, the modulus of 

elasticity E, and Polsson's ratio v 

A"- 
.  v- (1.3) 

Further, for all points on the contour of a crack at which 

the Intensity of cohesive forces is at a maximum, the coefficient 

of stress Intensity N, which occurs in (l.l) and is calculated 

without considering cohesive forces, equals K/TT . 

For all points on the contour of a crack at which the intensity 
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of cohesive forces has not reached trie maximum, the coefficient 

of stress intensity without considering the cohesive forces is 

less than K/n. 

The considerations cited above clarify the manner In which 

cohesive forces manifest themselves in this problem enough for us 

to formulate the basic problem of the theory of equilibrium cracks.* 

When the symmetry of the body, the initial cracks and the monotonic- 

aliy Increasing applied loads ensure development of a system of 

plane cracks, this problem is stated in the following form. 

Let the original cracks in the body have a certain system of 

contours. It is necessary to find the stress and shear field cor- 

responding to the load in question, and the system of contours of 

the surface cracks which surround the contours of the initial cracks 

(and perhaps are coincident with the original cracks to some extent) 

Mathematically, the problem reduces to the synthesis of a 

system of contours in which the intensity coefficient N of the 

fracture stress calculated without considering the cohesive forces 

at all points on the contours not lying on the contours of the 

original cracks equals K/TT and does not exceed K/H at all points 

on the contours lying on the contours of the initial cracks. 

The proposed formulation of the problem eliminates direct con- 

sideration of the molecular cohesive forces (they enter the problem 

only through the constant K). Consequently, the stress and deforma- 

tion field defined by the solution to this problem will not cor- 

respond to actuality when we are dealing with a rather small region 

around the contours of the cracks. 

It is obvious that when the cracks are reversible or when the 

applied load is sufficiently large that the contours of all cracks 

lie outside the contours of the initial cracks, the form of the 
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latter ceases to have significance. 

The equilibrium state which corresponds tu the maximum possible 

Intensity of the cohesive forces, even at only one point on the 

contour of the crack, may be stable or unstable. Depending on this, 

further growth of the crack under increased loads may proceed by 

various methods. When the equilibrium is stable, a slow increase 

in stress causes a slow, quasistatic transition of the crack from 

one equilibrium state to another. If equilibrium is unstable, the 

crack begins rapid dynamic growth at the slightest increase in the 

load over the equilibrium value. In some cases, when there are no 

neighboring stable equilibrium states, this leads to complete frac- 

ture of the body. The development of the theory of cracks was such 

that, until recently, the chief considerations were problems of 

precisely the latter type and, consequently, the beginning of crack 

growth was occasionally identified with complete fracture of the 

body. It is necessary to realize clearly that the situation in which 

this actually obtains is a particular case and its practical value 

must not be exaggerated. 

After a brief sketch of the development of the mathematical 

theory of cracks, we shall set forth below the general foundations 

of the theory of equilibrium cracks and the results of solving the 

most characteristic specific problems of this theory that have been 

dealt with up to the present time. At the end of the article, we 

shall consider briefly the dynamic problems of the theory of crack- 

ing. 

II. Outline of Development of Theory of Equilibrium Cracks 

Research in the area of the theory of cracks was begun nearly 

fifty years ago with the work of Inglls [l]. Within the framework 
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ol' the classical theory of elasticity, this work solved the problem 

of the equilibrium of an infinite body with an Isolated elliptical 

cavity (in particular, with a rectilinear slit) in a homogeneous 

stress field. The work of N.I. Muskhelishvlli [2], which was also 

within the framework of classical elasticity theory, provided a 

simpler and more effective solution to the problem of equilibrium 

of an infinite body with an elliptical cavity in an arbitrary stress 

field. 

However, despite the great value of References [1J and [2] for 

subsequent research, they still did not set up a true theory of 

cracks. The solutions obtained by these works had two properties 

which it is difficult to explain. 

First of all, the length of a crack at a given load was found 

to be indeterminate; a solution could be constructed using any 

value of this parameter. At the same time, everyday experience 

suggested that the size of cracks appearing in a body was somehow 

related to the tensile loads applied to the body. v»'hen the load is 

increased, cracks already in the body do not begin to widen at 

first, as the load was small; when a certain stress was reached, 

they begin to widen, and to do so in different ways depending on 

the method by which the load is applied. In some cases, the cracks 

grow rapidly until sufficient to fracture the body while the load 

was maintained constant, while in other cases the cracks grew slowly 

and ceased to widen as soon as the load stopped increasing. Further, 

since the spread of the crack is generally small in comparison 

with its lengtn, it is natural tu represent the crack in the form 

of a silt. Thus, in this case, the tensile stresses at the ends of 

the crack prove to be infinitely great in Inglis1 problem; generally 

speaking, this was also true of the problem considered by N.I. 
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Muskhelishvili. It Is clear that solutions In which Infinitely 

great tensile stresses are obtained at the edge of the crack are 

unsuitable for any physically correct model of a brittle body. 

Thus, the direct application of the classical system of elas- 

ticity theory to the problem of cracks led to a statement of the 

problem which was Incomplete and gave physically Inapplicable solu- 

tions . 

The work of Griffiths [3. 4] is correctly regarded as basic 

for the theory of cracks in brittle fracture. These Introduced for 

the first time the important idea that to develop an adequate 

theory of cracks, It would be necessary to perfect a suitable model 

of the brittle body by Introducing the molecular cohesive forces 

acting in the neighborhood of the edge of the crack. 

Griffiths investigated the following problem. In an infinite 

brittle body under tension at infinity by a uniform stress P„, let 

there be a rectilinear crack of definite size 21. It is necessary 

to determine the critical value P„ of the stress at which the crack 

will begin to widen. 

Griffiths dealt with the molecular cohesive forces as forces 

of surface tension which were forces interior to the given body; 

he disregarded their action on the stress deformation field. 

With this condition, the change AF in free energy ("the total 

potential energy" according to Griffiths' terminology) of a 

brittle body containing a crack In comparison with the same body 

subject to the same loads but without a crack equals the difference 

between the surface energy U of the crack and the decrease W in 

the elastic energy of the body caused by the formation of the crack. 

In order for this crack to grow, It is necessary that an increase 

in the size 21_ of the crack not cause an increase in the body's 
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free-energy change Ap. Thus, the parameters of the critical, equi- 

llbrlum state are found from the condition 

'•'■'-     Q (2.1) 

However, the surface energy U of the crack equals the product 

of the surface area of the crack by the energy T„ consumed in the 

formation of a unit area of the crack. The magnitude of Tn, the 

surface tension, may then be assumed constant for a given material 

under a given set of conditions when certain rather general assump- 

tions are made. Consequently, Griffiths' determination of the criti- 

cal load reduces to finding the magnitude of dw/cU ("the rate of 

liberation of elastic energy"). For the simplest case as studied 

by him, Griffiths calculated this value using the results of 

Inglis [lj and obtained expressions for the critical values of 

the fracture stress in the form 

l>       j        . • ft VW (2.2) 

for conditions of plane deformation and a plane stressed state, 

respectively. 

In the theoretical part of this work, Griffiths also obtained 

results with a bearing on research on the structure of a crack near 

its ends. Griffiths conducted this research on the basis of the 

classical solution of elasticity theory, which was arrived at with- 

out considering cohesive forces. In this case, it is natural that 

if the crack is regarded as a slit, the tensile stresses at the 

ends of the crack will be infinitely large. In order to eliminate 

this infinite tensile stress at the ends of the crack, Griffiths 

made an attempt to Improve his description or the crack, consider- 

ing it to have an elliptical cavity with a finite radius of curva- 

ture p at its end (Fig. 3). However, according to his estimates, 
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the radius of curvature at the end of the crack was of the order 

of the Interatomic distances, and this obviously proved the incor- 

rectness of the approach: in any investigation based on the con- 

cept of a continuous medium, distances of the order of interatomic 

distances cannot be considered finite. 

This section of Griffiths' work is flawed by the following: 

despite the fact that for definite equilibrium sizes of the crack 

it is possible to neglect the effect of molecular cohesive forces 

on the field of stresses and deformations, it is impossible to do 

so in research on the structure of a crack In the vicinity of its 

ends. The order of distances at which cohesive forces have an ef- 

fect compares with the distances over which the shape of the crack 

essentially varies. To a considerable degree, therefore, Griffiths' 

analysis of the structure of the crack edges cannot be acknowledged 

as correct. In particular, as will be shown in detail, Griffiths' 

conclusion regarding the rounded form of a crack near its end is 

incorrect. 

This aspect of the matter, which is obviously of basic impor- 

tance, has remained unclear until recently and in many cases, has 

led to incorrect interprepation of Griffiths' results [5]. 

In addition to the basic deficiency noted here, there are 

several  inaccuracies in the calculations in the theoretical sec- 

tions of Reference [3]. Soon after the publication of this work, 

Smekal [6] published a detailed commentary on it which also con- 

tained a very interesting general discussion of the problem of 

brittle fracture and corrected the aforementioned inaccuracies. The 

later work of Wolf [7] gave a clearer and simpler account of Grif- 

fiths' results and also carried out analogous calculations for 

somewhat different (but also homogeneous) stressed states. Reference 
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[7] also dealt with the connection between Griffiths' theory of 

fracture and theories of strength which had been proposed pre- 

viously. 

The report by L.V. Obreimov [8] in connection with his ex- 

periments on the cleavage of mica, investigates the tearing away 

of a thin chip from a body by a splitting wedge slipping along its 

surface and touching the chip at one point. Using the approximate 

methods of the theory of thin beams, and referring to the analo- 

gous work of Griffiths on the energy approach, I.V. Obreimov formu- 

lated an expression which related the shape parameters of the crack 

to the surface tension. Reference [8] was later supplemented by 

many researchers [9-12]. 

The determination of the rate of liberation of elastic energy 

dw/Sl for tensile-stress fields more complex than the homogeneous 

field or for other crack configurations encountered considerable 

mathematical difficulties. Research by Westergaard [13], Sneddon 

[lk,   15], Snedden and Elliot [16], and Williams [17] ascertained 

the distribution of stresses and strains in the vicinity of shear- 

ing-fracture surfaces. In addition to the classical works by Musk- 

helishvili [2, 18, 19], the research of Westergaard and Snedden 

constituted a mathematical basis for subsequent work on the theory 

of cracks. However, no equilibrium conditions for new particular 

cases, not to mention any general case of loading, were derived 

in these studies. 

The works of Sack [20], Willmore [21], and Bowie [22] gave 

the equilibrium conditions for certain new particular cases of 

loading and crack location. The direct application of the energy 

method in these works required surmounting considerable difficulties 

in calculation. Because the equilibrium states in the problems con- 
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sidered In References [20-22] were unstable and unique, the equilib- 

rium conditions for them coincide with the conditions for total 

fracture of the body. 

An important step for the theory of cracks was the work done 

by Irwin [23] and Orowan [24] in which the concept of quasibrlttle 

fracture was developed. Irwin and Orowan drew attention to the 

fact that a number of materials which showed high plasiticity in 

standard tensile tests fractured according to a "quasibrlttle" mech- 

anism when cracks were formed. This meant that the developing plas- 

tic deformation was concentrated in a very narrow layer in the 

vicinity of the surface of the cracks. As Irwin and Orowan showed, 

it is possible to use Griffiths' theory of brittle fracture in 

these cases, replacing the surface tension by the effective surface- 

energy density. In addition to the specific work of fracturing 

internal bonds (surface tension) this quantity includes the specific 

work expended on plastic deformation in the layer of the crack near 

the surface, which occasionally exceeds the surface tension by 

several orders. 

The introduction of quasibrlttle fracture considerably broadened 

the area of application of the theory of brittle fracture, and with- 

out doubt served for a while as one of the basic reasons for the 

recent revival of interest in this problem. Irwin, Orowan, and 

other authors published a number of papers [23-32] devoted to the 

development of a generalized theory of brittle fracture, research 

on the limits of its applicability, and analysis of experimental 

data f£om the viewpoint of thia theory. It is necessary to mention 

the article by Bueckner [33], in which a very general energy analy- 

sis of brittle and quasibrlttle fracture was given on the basis of 

the theoretical system of Griffiths, Irwin, and Orowan. 
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In all the enumerated works, there remained unexplained the 

problem of the structure of a crack In the vicinity of its contour. 

In a very Interesting study [3^] devoted to physicochemical analy- 

sis of the deformation process, P.A. Rebinder for the first time 

expressed the idea of the wedge-shaped form of the crack ends and 

the necessity for a corresponding Improvement of Griffiths' theory. 

In analyzing crack shapes, Elliot [35], Mott [36], and Ya.I. Frankel1 

[5] proceeded from the notion of a crack of infinite length between 

two unbroken blocks of the material being fractured, separated by 

the normal interatomic distance before the crack is formed. 

In Reference [35], the blocks were regarded as semi-infinite. 

Proceeding from the classical solution to the problem of elasticity 

theory for rectilinear [l] and discoid [20] cracks of size 2c in a 

uniform fracture stress field p, [35] gives calculations for the 

distribution or normal stresses o and the transverse shears v 

of points on planes lying at a distance of one half the normal inter- 

atomic distance from the crack surfaces. The function a  (2v), 

which contains p and c as parameters, was identified with the ex- 

pression for the molecular cohesive forces as a function of dis- 

tance; integration of this function gave the surface stress, which 

is thus related to p and f. The author Identified the relation 

obtained with the fracture condition; this condition naturally 

differed from that of Griffiths. The distribution found for the 

transverse shears was identified with the form of the crack. 

This approach was unsatisfactory for the following reasons. 

The formal use of the apparatus of classical elasticity theory in 

the determination of stress and strain near the margin of a crack 

in work [35] is not justifiable, since, in using this apparatus, 

all distances — even those which are assumed to be small — must be 
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large In comparison with the interatomic distances. In addition, 

it is necessary to consider that the cohesive forces act not only 

within a body but also on sections of the surface of the crack. As 

will be shown in detail below, consideration of this circumstance 

gives a pointed shape to the ends of the crack rather than a rounded 

shape, with no infinite concentration of stresses at the ends of 

the crack. Thus, the distributions of stresses and shears near the 

edge of the crack surface differ substantially from the correspond- 

ing distributions obtained in accordance with the solutions pro- 

posed by Inglls [1] and Sack [20], in which the surface of the 

crack was assumed to be free of stress. Let us note that the drop 

observed in the curve o  (2v) with increasing v is considered in 

work [35] as occurring very slowly, far more slowly than the natural 

rate of drop in the intensity of the cohesive forces. 

Ya.I. Frankel' [5] dealt with the problem of a crack of in- 

finite length which passes longitudinally along a thin band. The 

use of the approximate theory of thin beams, which is useless for 

investigation of the form of a crack near its ends, did not allow 

him to obtain adequate results. We may note in passing that the 

critique of Griffiths' theory contained in this work by Ya.I. 

Frankel1 likewise cannot be considered correct to any substantial 

degree. Ya.I. Frankel' questions Griffiths' statement that equilib- 

rium is unstable in the case of a rectilinear crack in a uniform 

tensile-stress field as considered by the latter, relating this 

instability to the incorrect assumption on the part of Griffiths 

as to the form of the ends of the crack. This was wrong: the struc- 

ture assumed for the crack at its ends has no bearing on the 

stability or instability of the crack equilibrium. As will be 

shown below, crack instability In a homogeneous field also takes 
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place on considering the smooth union of the cracks at their ends; 

it corresponds fully to the essence of the matter. Ya.I. Frankel's 

conclusion that, in addition to an unstable state, a stable equilib- 

rium state also exists in this case was brought about by his in- 

correct substitution of another stressed state for the homogeneous 

stressed state.* 

The work by /V.R. Rzhanitsyn [37] made an attempt to solve the 

problem of a circular crack In a body subject to a uniform tensile 

stress with consideration of molecular cohesive forces distributed 

along the surfaces of the crack and a smooth union of the crack at 

its edge. Unfortunately, the use of inadequate methods based on the 

averaging of stresses and strains made it impossible for the author 

to obtain the correct equilibrium conditions for the crack. 

The idea first introduced by S.A. Khristianovich [38] is of 

basic importance for understanding the structure of cracks in the 

vicinity of the ends. In connection with the theory of the so-called 

hydraulic fracture of an oil-bearing geological stratum, S.A. 

Khristianovich dealt, with an Isolated crack in an infinite body 

compressed at infinity by a constant hydrostatic stress; the crack 

was supported by the uniformly distributed pressure of a fluid 

enclosed within the crack. The problem was studied in a quasistatic 

formulation. In its solution, S.A. Khristianovich was balked by the 

indeterminate length of the crack. However, he drew attention to 

the following circumstance. If we assume that the liquid fills the 

crack completely, the fracture stress at the end of the crack is 

always infinitely large, whatever the size of the crack. But if we 

assume that the liquid does not fill the crack completely, so that 

there is a free section of the surface of the crack which is not 

wetted by the liquid, the fracture stresses at the ends of the crack 
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will be finite at one exceptional value of the craek length. For 

this crack length (and only for this length) It was found that the 

opposing faces of the crack unite smoothly at its ends. 3. A. 

Khristianovich advanced the hypothesis of finite stress, or, what 

is the same thing, smooth uniting of the opposing faces of the 

crack at its ends, as a basic condition determining the size of 

the crack. Use of this hypothesis has made it possible to solve 

a number of problems in the formation and growth of cracks in rocks 

[38-43]. However, none of these works considered the molecular co- 

hesive forces directly. In dealing with cracks in rock masses, it 

is quite permissible to neglect the cohesive forces, as was shown 

by the evaluations, since the pressure of the surrounding rock mass 

is manifested here much more strongly than the molecular cohesive 

force, especially if we consider the naturally broken-up nature of 

the rocks. Under other conditions (in particular, in many cases 

where laboratory models of rock massifs are used), the cohesive 

forces play an important role and their consideration is of sub- 

stantial importance for analysis of equilibrium conditions and the 

development of cracks. 

In connection with this research, we should note the very 

Interesting earlier work of Westergaard [44] (see also [13]). This 

work, on the basis of an analogy with the contact problem noted by 

the author, affirms the absence of stress concentration at the end 

of a crack in a concrete-like brittle material. Reference [44] 

also gives formulas which correctly describe the stresses and strains 

in the vicinity of the ends of the equilibrium cracks formed in 

brittle fracture in the absence of cohesive forces. However, Wester- 

gaard did not relate the finite-stress condition to the determina- 

tion of the length of the crack, which he assumed to be given. 
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The studies by Irwin [45, 46] (see also [4?, 48, 49, 33]) es- 

tablished an Important formula which related the rate of elastic 

energy liberation to the coefficient of stress intensity in the 

vicinity of the ends of the crack in the problem of the classical 

elasticity theory. The rate of elastic-energy liberation and the 

fracture conditions for several new cases of loading and crack posi- 

tion were determined on the basis of this formula [47, 50, 32, 51, 

52]. 

Beginning with Griffiths, the majority of theoretical research 

has dealt with problems of one type, in which the equilibrium state 

in which the intensity of the cohesive forces at the edge of the 

craft is maximal is unstable and the condition necessary for the 

development of a crack to begin was identical with the condition 

necessary for complete fracture to begin. Consequently, some works 

identified the condition for Initiation of crack development with 

the condition of rapid crack propogation and fracture for all cracks. 

Generally speaking, this is not so; actually, cracks can be stable, 

so that the start of the crack development is not at all necessarily 

associated with fracture of the body. We must nut treat this matter 

as though stable cracks were a rarity not encountered in practice 

and difficult to generate experimentally. As the experimental research 

carried out by various authors, beginning with I.V. Obreimov [8], 

has shown, in many cases the development of cracks proceeds stably 

during considerable portions of the fracture process. Thus, Wells 

[301 obtained cracks in steel plates which were stable over a cer- 

tain tensile-stress range to the combined action of external ten- 

sile stresses and internal stresses set up by welded seams. Roesler 

[53] and Benbow [54] investigated stable conical cracks in glass 

and quartz. Benbow and Roesler [9] obtained stable cracks by in- 
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serting wedges in strips of organic glass. Recently, Romualdi and 

Sanders [52] obtained cracks that were stable within definite stress 

ranges by elongating a plate reinforced by riveted-on stiffening 

ribs. References to other research in which stable cracks were ob- 

tained and studied can be found In the monograph by B.A. Drozdov- 

skiy and Ya.B. Fridman [.55], All these works definitely confirm the 

feasibility of applying the concept of brittle and quasibrittle 

fracture to stable cracks. 

Consideration of stable cracks greatly broadens problem formu- 

lation in the theory of equilibrium cracks. Actually, only deter- 

mination of the load at which the crack begins to widen is of in- 

terest for unstable cracks, since the process of crack development 

before this stress is reached becomes dynamic. For stable cracks, 

there also arises the problem of investigating the quasistatic 

development of cracks with varying loads. 

In connection with the foregoing considerations, References 

[56-61] clarify and supplement formulation of problems in the theory 

of equilibrium cracks formed in brittle fracture. These works pro- 

posed a new approach to the problems of crack theory based on the 

general presentation of the problem of elastic equilibrium in a 

body containing cracks as formulated in [40] . The material wnich 

follows is based on this approach, so that we shall not dwell on 

its characteristics here. A number of new problems of the theory of 

cracks have been formulated and solved on the basis of the proposed 

approach. 

Ill. Structure of Knds of Equilibrium Crack iu a Brittle Body 

1. Stresses and strains in the vicinity of the end of an arbi- 

trary normal-shearing-fracture surface. As was shown earlier, it 

is possible to construct a formal solution to the differential equa- 
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tions of elasticity theory which satisfies the boundary conditions 

corresponding to the load applied to the body by arbitrary assign- 

ment of the shearing-fracture surface. This section is a study of 

the behavior of solutions of the elasticity-theory equations In the 

vicinity of the edge of a shearing-fracture surface. For simplicity 

of discussion, we shall limit ourselves here to normal-shearing- 

fracture surfaces which are sections of a surface bounded by closed 

contours. 

Let us take a neighborhood in the vicinity of an arbitrary point 

0 on the boundary of such a surface whose characteristic dimension 

is small in comparison with the radius of curvature of the boundary 

at point 0. The deformation in this region can be assumed two-dimen- 

sional and to correspond to an infinite rectilinear slit in an 

infinite body being acted upon by a certain system of symmetrical 

loads (Fig. 6;   the plane of deformation is the plane normal to the 

contour of the fracture surface at point 0, and the line of the 

slit is the intersection of this plane with the fracture surface). 

Loads can be applied to the surfaces of the slit and within the body; 

loads applied to the surfaces of the slit may be regarded as normal 

without loss of generality in subsequent analysis. Let us consider 

this configuration in greater detail. 

The field of stresses and shears can be presented as the sum 

of two fields (Fig. 6), the first of which corresponds to a con- 

tinuous body acted upon by a stress applied from within the body, 

while the second corresponds to a body containing a slit and acted 

upon by symmetrical loads applied only to the surfaces of the slit. 

The shape of the deformed surface of the slit is determined by the 

second stressed state, since the normal shears at the site of the 

slit in the first stressed state are, according to symmetry, zero.* 
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Analysis of the first stressed state Is carried out by the usual 

methods of elasticity theory and is of no basic interest; we will 

consider this stressed state to be known. Let us assume that the 

line of the slit corresponds to the positive x-semiaxis; the normal 

Fig. 6. 

stresses g(x) applied to the surface of the slit in the second 

stressed state arc equal to the difference between the stresses 

applied to the surface of the slit in the resultant field G(x) and 

the stresses at the slit p(x) which correspond to the first stressed 

state. 

Using Muskhelishvili's method [18] for analysis of the second 

stressed state, we have relationships determining the stresses and 

shears in the form 

a »  5„«)  4RcO(») 

»-ffl,,w-0(*) + Q® + («-1)^) 
2ji(u«) . />>-<)  x<p(i) — »(«) — (* — s)Q(i) 

x = 3 — Av 

(3.1) 

(3.2) 

(3.3) 

(2)    (2) 
Here z ■ X + iy, o * ', <*„ 

*■    y 

(2) and o  v ' are the components xy y 

(2)   ,  (2) : i;v '   and vv ' of the stress tensor for the second stressed state; 

are the shear components along the x and y axes corresponding to 

the second stressed state; u. ■ E/2(l 4 v) la the shear modulus, 

E is Young's modulus, and v is Poisson's ration. The analytical 

functions <p, CD, $, and Q are expressed by the formulas 

•W ß(s)-»'<8)-ö'W--d7r?!T^£        (3.M 
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¥(*)-»(*)    srSfWin-^ft* (3-5) 

At   the  slit   (x > 0,   y = 0)   and   its  extension   (x < 0,   y ■  0), 

the  expressions 

3,«)    5„«i    ZRaOW.q^-O.     iw.ULyÄ im9<s) (3.6) 

are satisfied. 

From this and from the known formulas for the limiting values 

of a Cauchy integral at the ends of the contour [19]> an expression 

is obtained for the normal tensile stresses in the vicinity of the 

end of the slit on its extension: 

v».    , ;  •ff+im+oato (3.7) 

where s, is the short distance from the point being considered to 

the end of the slit. Similarly, in order to determine the normal 

displacement for points on the slit surfaces in the vicinity of its 

end, we obtain 

•»'-i^Kl^ + OW) (3.8) 

where s? is the distance from the point on the slit surface being 

considered to its end, while the plus and minus signs correspond to 

the upper and lower faces of the slit. 

The research which has been conducted has completely clarified 

the distribution of normal tensile stresses and normal shears in 

the vicinity of the boundary of an arbitrary normal fracture sur- 

face. Specifically, the formulas 

v 
C(0) 0|J^), V 

•wi — v°-).v yrt 
■0i (3.9) 

follow directly from Expressions (3.7) and (3.8). Here, o is the 

tensile stress at a point on the body lying at a short distance s, 
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from the boundary of the fracture surface and on a plane contiguous 

to the contour of the fracture surface passed at point 0; N Is the 

"coefficient of stress intensity", whose value depends on the loads 

acting, the configuration of the body and its fracture surface, and 

the coordinates of the point 0 on the contour being considered; 

G(0) is the magnitude of the normal stress applied to the fracture 

surface at the point on the contour of this surface being con- 

sidered (Pig. 6); s„ is the short distance between the point on 

the fracture surface and its contour. Generally speaking, there are 

three possibilities, depending on the sign of N. 

If N > 0, an Infinite tensile stress acts at point 0 on the 

boundary of the fracture surface. The shape of the deformed fracture 

surface and the distribution of the normal stresses a    in the vicinity 
y 

of point 0 have the form shown in Pig. 7a. 

If N < 0, an infinite compressive stress acts at point 0 on 

the boundary; the shape of the deformed fracture surface and the 

distribution of stresses o in the vicinity of point 0 have the 

form shown in Fig. 7t>. As may be seen, in this case the opposing 

faces of the crack enter one another and, as it were, merge; it is 

obvious that this case is physically impossible. 

Finally, if N B 0, the stress acting in the vicinity of the 

boundary is limited and as we approach point 0, it tends toward the 

normal stress applied to the surface at this spot on the boundary, 

so that there is a continuity of the stresses o at the boundary 

and a smooth union of the opposing faces of the fracture surface at 

its boundary (Pig. 7c). 

Research on the distribution of stresses and strains in the 

vicinity of the edge of a normal fracture surface was begun by 

Wcstergaard [44, 13] and Sneddon [14, 15] and subsequently continued 
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by the author [40], Williams [17], and Irwin [45-47]. Due to the 

nature of the stressed states considered In works [14, 15] and 

[45-47], results were obtained which had a bearing only on the 

case N > 0. 

Fig. 7. 

2. Stresses and strains in the vicinity of the edge of an equilibrium 

crack. The results obtained in the preceding section pertain to an 

arbitrary normal slip-fracture surface. Let us prove that, for an 

equilibrium crack, N = 0 at all points on its boundary. 

Let us consider the possible state of an elastic system which 

differs from the actual equilibrium state only by a certain varia- 

tion In the form of the contour of the crack in a small area around 

an arbitrary point 0 on it (Fig. 8), The new contour is a certain 

curve surrounding point 0 in the plane of the crack. This curve is 

in contact with the previous boundary of the crack. This curve is 

in contact with the previous boundary of the crack at points A and 

D near 0; at all other points, the contours of all cracks remain 

unchanged. Because of the proximity of the points of contact A and 

B to point U, the Initial contour of the crack contour can be as- 

sumed rectilinear on segment AB. According to the foregoing, the 

distribution of normal shears for points on the new crack surface 

and the distribution of tensile stresses at these points before 
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the formation of the new crack sur- 

face have, to within small quantities, 

the following form: 

„.iiii-a»^, H—fc    (3.10) 
Fig. 8. Here N is the coefficient of 

stress intensity at point 0. 

The energy liberated in the formation of the new crack surface, 

which is equal to the work required to close this new surface is ob- 

viously equal to 

ö£> a    0 

- *V-jP*» ^hdx-2^-^«1™3 (3.11) 
u 

where öS is the area of the projection of the new crack surface onto 

its plane. 

It follows from the equilibrium conditions of the crack that 

6A should revert to zero, from which and (3.11) it follows that 

N  0. 

Thus, a very important statement characterizing the structure 

of the cracks in the vicinity of their contours is valid. 

1. The tensile stresses at the boundary of the crack are finite. 

2. The opposite banks of a crack unite smoothly at its boundary. 

Thus it has been shown that, in contrast to Griffiths' ideas, 

the form of the crack in the vicinity of the edge is as that depicted 

in Fig. 4. Since the only forces which act upon the surface of the 

crack in the vicinity of its boundary are cohesive forces, it follows 

from Eq. (3-9) that the tensile stress at the boundary of the crack 

equals the cohesive force intensity at the boundary. 

In particular, If there are no cohesive forces, the tensile 

stress at the boundary of the crack will equal 0. 
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The condition of finite stress and smooth union of the op- 

posing faces at the ends of a crack was first suggested in hypo- 

thetical form by S.A. Khrlstianovich [38] as the basic condition 

which determines the position of the end of the crack. The proof 

given above for this condition follows basically from [60]. Formula 

(3.11) for plane deformation was first Indicated without relation to 

finite stress and smooth union in 

the work of Irwin [45,46] (see also 

the survey by Irwin [47] and the 

paper by Bueckner [33]). The earlier 

work by Westergaard [44] affirmed the 

absence of stress concentration at 

Fig. 9. the end of the crack in a brittle 

material of the concerete type, although the finite-stress condition 

was not associated in this work with determination of the size of 

the crack. 

We are considering here cracks involved in normal fracture 

solely for simplicity of description. The entire foregoing discus- 

sion and, in particular, the demonstration of the finite magnitude 

of the stresses at the end of a crack can be extended without any 

substantial change to the general case in which the surfaces of 

the crack undergo fracture and are subject to tangential slip com- 

ponents . 

3. Determination of the boundaries of equilibrium cracks. The 

condition of finite stress and smooth union of a crack at its 

boundary makes it possible, for a given system of forces acting on 

a body, to formulate the problem of the theory of equilibrium cracks. 

This problem consists in the following. For a given arrangement of 

initial cracks and a given system of forces acting on a body, it 
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la necessary to find the stress, deformation, and crack boundaries 

in the elastic body under consideration so as to satisfy the dif- 

ferential equations of equilibrium and the boundary conditions and 

to ensure finite stresses and smooth union of the opposing faces 

at the boundaries of the crack. 

Let us analyze the solution of this problem on an elementary 

model of an isolated rectilinear crack in an infinite elastic solid 

which is compressed at infinity by a nondirectional stress q. The 

crack is subject to the concentrated forces T, which are applied 

at opposing points on its surface (Fig. 9). 

We can use the method of N.I. Muskhelishvili [18] to obtain 

a solution for the equilibrium equations which satisfy the boundary 

conditions for an arbitrary crack length 21. In this case the stresses 

and shears are expressed by Formulas (3.1)-(3-3)> with 

<I)(x)- £2 J p      - 1* <P+1) ] (o To) 

■  T(=H) 
As may be seen, the equilibrium equations and boundary condi- 

tions do not determine the length of the crack. The distribution of 

stresses a over the extent of the crack and the normal shears v 
y 

for points on the surface of the crack in the vicinity of its end 

is given in the form 

■(£-. )•£+•« (3-13) a 

bi—!£-, JVC+*(,?, 
5 v ni 

The finite stresses and smooth union of the crack at its ends 

are ensured simultaneously by the condition 

which also determines the size of the crack for given stresses T 

and q. 

Let us now try to determine the length 21 of an Isolated recti- 
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linear crack in an infinite body under tension at Infinity by a uni- 

form stress P- In the direction perpendicular to the crack. If we 

assume that the surface of the crack is free from stress, It is not 

difficult to show that the tensile stress over the length of the 

crack in the vicinity of its end depends on the distance s, in the 

following manner: 

*-9? (3-15) 
From this it follows that, at any 1 a    at the end of the crack 

- y 
will not be finite and there will be no equilibrium cracks. This 

paradoxical result is explained by the fact that we have not taken 

into consideration the molecular cohesive forces acting in the 

vicinity of the boundaries of the crack on its surfaces, and have 

thus incompletely characterized the loads acting on the body. 

Consideration of cohesive forces and the final formulation of 

the problem of the theory of equilibrium cracks formed in brittle 

fracture are dealt with in the following Section. 

IV. Basic Hypotheses and General Formulation of the Problem of 
Equilibrium Cracks 

1. Cohesive forces. Terminal and interior regions. Basic hypo- 

theses . In order to construct an adequate theory of the cracks formed 

in brittle fracture, it is necessary to supplement our model of the 

brittle body by considering the molecular cohesive forces acting on 

the surfaces of a crack in the vicinity of its end. As we know, 

the intensity of cohesive forces varies greatly as a function of 

distance. Thus, for an ideal crystal, the intensity f of the co- 

hesive forces acting between two atomic planes at a distance y from 

one another equals 0 when y equals the normal interatomic distance 

b. When y increases to a magnitude of the order of one-and-one- 

half times b, the intensity f increases, reaching a very high maxi- 
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mum value f ~J ET0/b ~ E/lO, and then rapidly decreases with In- 

creasing y (Pig. 10). 

Here E is Young's modulus and 

T0 is the surface tension, which is 

related to f(y) by the expression 

■ 

2TU,    \f{y)dU (4.1) 
i' 

The maximum intensity f de- J     m 

_.   , „ fines the theoretical strength, i.e., Pig. 10. 

the strength which the solid would 

have if it were an ideal crystal. 

The actual strength of a solid is generally several orders of 

magnitude lower because of the presence of defects in the crystal 

structure. 

For an amorphous body, the relationship of the intensity of 

cohesive forces to distance has the same qualitative character. 

At the present time, the data which confirm the character of 

the relationship between the intensity of cohesive forces and dis- 

tance stated above reduce to the following. It has long been known 

that the strength of thin filaments considerably exceeds the strength 

of large specimens produced from the same material [62, 63]. Re- 

cent experiments have brought to light the exceptionally high strength 

of thread-like crystals of certain metals; this strength approxi- 

mated the theoretical values [63]. We may assume that this phenome- 

non is associated with a comparatively small number of structural 

defects in thin filaments and whisker crystals. Further, numerous 

direct measurements have recently been conducted on the intensity 

of molecular cohesive forces in glass and quartz [64-66]. Special 

mention should be made of the highly elegant method of the types of 
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measurement based on the use of micro- 

valances employing feedback, which 

were proposed and u,sed by B.V. Derya- 

gin and I.I. Abrikosova [64, 65]. 

However, this direct measurement is 

for determination of the distance y, 

which is very large in comparison 
Fig. 11. 

with the normal interatomic distance, 

and thus determines only the end of the descending arm of the curve 

f(y). Yo.M. Lifshits [64] developed a macroscopic theory for the 

cohesive forces at such distances; this theory has been well con- 

firmed by the results of the measurements mentioned above. At dis- 

tances of the order of several normal interatomic distances, the 

function f(y) is inaccessible at the present time to any rigorous 

quantitative theory or to direct experimental determination. An 

account of attempts at mathematical evaluation of the function f(y) 

for such distances, and the theoretical strength can be found in 

[67, 63, 68]. 

The distance between the opposing faces of a crack varies from 

magnitudes of the order of interatomic distances in the vicinity 

of the crack contour to occasionally rather high values remote from 

the boundary. Consequently, it is natural to divide the surface of 

the crack into two parts (Fig. 11). In the first part, the interior 

region of the crack, the opposing faces of the crack are far apart, 

so that their interaction is negligibly small and the surface of 

the crack can be assumed to be free of stresses caused by the inter- 

action of the opposing faces. In the second section, which adjoins 

the contour of the crack and is referred to as the terminal region 

of the crack, the opposing faces of the crack draw near one another, 
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so that the action ol" molecular cohesive forces on this section of 

the surface is of considerable Intensity. 

The boundary between the terminal and interior regions of the 

crack surface is, of course, to a certain extent arbitrary. For 

very small cracks, the interior region of the crack surface may 

not exist at all. 

Since the distribution of cohesive forces along the surface of 

the terminal region of the crack is not known beforehand, a sub- 

stantial part of the loads applied to the body is not known either. 

Consequently, it is impossible to solve the problem of cracks 

directly in the form in which it is stated in Section III. The 

following is possible in principle for solving the problem of cracks 

The distance between the opposing crack faces at each point on its 

surface is determined as a function of the unknown distribution of 

cohesive forces along the surface. Assuming an assigned relation- 

ship f(y) expressing the Intensity of cohesive forces as a function 

of distance, we may find from it an expression determining the dis- 

tribution of cohesive forces along the surface of the crack. 

This approach to the problem of cracks cannot be carried out 

in practice. First of all, the function f(y) is not known to a suf- 

ficient extent for any real material. Even if this function were 

known, the problem would reduce to a very complex nonlinear inte- 

gral equation whose effective solution presents great difficulty 

even in the simplest cases.* 

Attempts have been made to assign a definite form to the dis- 

tribution of cohesive forces along the sux-faces of the crack, but 

these attempts cannot be considered sufficiently substantiated. 

For rather large cracks, investigation of which is of basic 

interest, the difficulty associated with the lack of Information 
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on the distribution of cohesive forces along their surfaces can be 

avoided by not making any concrete hypotheses about this distribu- 

tion. More precisely, the general properties considered above for 

cohesive forces as a function of distance make it possible to formu- 

late two basic hypotheses which substantially simplify further 

analysis and make it possible In the final analysis to eliminate 

the cohesive forces completely from consideration of the loads 

acting on the body in determining the contours of the cracks. 

First hypothesis. The width d of the terminal region of the 

crack Is small in comparison with the size of the entire crack. 

The possibility of adopting this first hypothesis is a result 

of the rapid decrease in cohesive forces when the distance between 

the opposing faces of the crack is increased. 

It is understood that there are microcracks to which this hypo- 

thesis is inapplicable. However, since the width d of the terminal 

region is very small, the first hypothesis is correct for very small 

cracks and is known to be correct for all real macrocracks. All 

the same, the width d is assumed to be sufficiently great in com- 

parison with microscopic dimensions (for example, in comparison 

with the lattice constant of a crystalline body) that the methods 

of continuum mechanics can be used for distances of the order of d_. 

Second hypothesis. The form of the normal section of the sur- 

face of the crack in the terminal region (and, consequently, the 

local distribution of cohesive forces along the surface of the crack) 

does not depend on the loads acting on the crack and is always the 

same for a given material under given conditions (temperature, com- 

position and pressure of the surrounding atmosphere, etc.). (By 

normal section, we mean here a section cut by a plane normal to the 

contour of the crack.) 
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According to the second hypothesis, when a crack widens, the 

terminal region In the vicinity of a given point shifts progres- 

sively, as It were, to another place but the shape of Its normal 

section remains unchanged. 

The second hypothesis Is applicable only for those points on 

the contour of the crack where the maximum possible Intensity of 

cohesive forces is reached, so that any increase, no matter how 

small, in the load applied to the body at this point causes the 

crack to widen. 

Equilibrium cracks whose contours have at least one such point 

are naturally called mobile-equilibrium cracks in contrast to sta- 

tionary-equilibrium cracks, which do not possess this property and, 

consequently, do not widen on an infinitesimally small increase in 

load. 

Thus, the second hypothesis and all conclusions derived from 

it are applicable to reversible cracks, as well as to the irrevers- 

ible equilibrium cracks which are formed in primary fracture 

of a brittle body while the stress is increasing. They are applicable 

to irreversible cracks formed by a decrease in the load on equilib- 

rium cracks that existed under some large load, and to artificial 

notches which do not widen subsequent to their formation. 

The possibility of adopting this second hypothesis is associated 

with the fact that the maximum intensity of cohesive forces is 

very large and exceeds by several  orders the stresses which would 

arise in a solid body without cracks which is subject to the same 

load. It is therefore possible to neglect changes in stress occurring 

in the terminal region as a result of a change in load and, con- 

sequently, the corresponding changes in the form of the normal sec- 

tions of the terminal region. 
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The hypotheses formulated are a synthesis of the results of 

a qualitative analysis of the phenomena of brittle fracture carried 

out by a number of investigators, beginning with Griffiths. They 

are the only hypotheses dealing with cohesive forces and form the 

basis for the theory given below. They are formulated in explicit 

form In [56, 57] . 

2. The coefficient of cohesion. It is assumed that the body 

being considered is linearly-elastic to the point of failure, so 

that the field of the elastic elements in the body containing the 

cracks can be represented as the sum of two fields; the field cal- 

culated without considering cohesive forces and a field correspond- 

ing to the action of the cohesive forces alone. The quantity N 

which occurs in formula (3.15) and, Q.E.D., equals zero can there- 

fore be represented in the form N = N„ + N , where the coefficient ^ 0   m 

of stress intensity N« corresponds to the loads acting on the body 

and the same crack configuration but without considering the co- 

hesive forces, while the coefficient of stress intensity N  corre- 

sponds to the same crack configurations and the cohesive forces 

taken alone. 

By virtue of the first hypothesis, the width d of the terminal 

region in which the cohesive forces act is small in comparison with 

the dimensions of the cracks as a whole and, in particular, in com- 

parison with the radius of curvature of the crack contour at the 

point under consideration. Consequently, it is possible in deter- 

mining the values of N , to assume that the field corresponds to m 

the configuralion of an infinite body with a semiinfinite slit, as 

considered in Section III, Paragraph 1, to whose surface symmetri- 

cal normal stresses are applied. From this and from (3-7) it follows 

that 
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Here G(t) Is the distribution of cohesive forces differing 

from zero only in the terminal region 0 < t < d. 

By virtue of this second hypothesis, the distribution of co- 

hesive forces and the width d of the terminal region at those points 

on the contour of the crack where the Intensity of cohesive forces 

is at a maximum are independent of the load applied, so that the 

integral on the right-hand side of Eq. (4.2) is a constant char- 

acteristic of the given material under given conditions. This con- 

stant is designated K: 

K:   \ -■'"'^ (4.3) 

and is called the modulus of cohesion, since this quantity char- 

acterizes the crack-development resistance of the material due to 

the cohesive forces. As will be shown later, the quantity K is the 

only characteristic of the cohesive forces which takes part in 

formulation of the problem of cracks. 

The dimensions of the modulus of cohesion are 

[Kl = [F][Ll-v,-[M][L]-".[Tl-» (4.4) 

Here [F] represents the dimensions of force, [L] length, [M] 

mass, and [T] time. Constants with similar dimensional formulas 

are encountered in the contact problem of elasticity theory [71, 

72, 73]. It is not coincidental that a strong correlation exists 

between contact problems and problems in the theory of cracks gene- 

rated in brittle fracture, as was apparently first noted in works 

by Westergaard [44, 13]. 

3. Boundary conditions at outline of equilibrium crack. For 

points on the boundary of an equilibrium crack at which the maxi- 

mum intensity of cohesive forces is reached, so that the second 

othesis is applicable, Formula (4.2) is represented in the form 
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A'TO LJC (4.5) 

Prom this, and since N = 0, we obtain 

N* - i- A- (4.6) 

It ia also possible to formulate the boundary condition at 

points on the boundary of an equilibrium crack at which the inten- 

sity of cohesive forces is at a maximum in the following fashion. 

As we approach these points, the normal tensile stress a    at points 

in the body lying in the plane of the crack, as calculated with- 

out considering the cohesive forces, tends to infinity in accor- 

dance with the expression 

K = +0(1) (4.7) ■ Ky, 

where s is a short distance from the contour point being considered. 

Satisfaction of (4.6) for at least one point on the contour 

will be the condition under which the crack reaches a state of 

mobile equilibrium. 

It should be specially emphasized that generally speaking, a 

crack's reaching a state of mobile equilibrium shoald not be asso- 

ciated with the beginning of its rapid unstable development and, 

even less with complete failure of tne body. A mobile-equilibrium 

crack can be either stable or unstable. Only in the case of unstable 

mobile equilibrium will Eq. (4.6) be the condition for the beginning 

of rapid crack development. However, even in this case, complete 

failure of the body is not obligatory: the crack may shift from an 

unstable equilibrium to another, stable state. Numerous examples 

illustrating various possibilities will be considered in the next 

section. 

If the crack is irreversible and if there are points on its 
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boundary where the Intensity of cohesive forces is less than the 

maximum possible value*, the second hypothesis is Inapplicable at 

such points. The cohesive forces acting in the terminal region of 

the crack surface 1n the vicinity of such points are smaller than 

the cohesive forces acting in the terminal region in the vicinity 

of points of the type considered above. Consequently, it follows 

from (4.2) that - N < K/TT and, since Nn « -N , that for such points x   '        m 0    m 

A'0<£ (4.8) 

With increasing load, the cohesive forces in the terminal 

region increase, ensuring finite stress and a smooth union at the 

boundary of the crack. However, the crack will not widen at this 

point on the boundary until the cohesive forces reach their maximum 

intensity, so that the second hypothesis becomes applicable and 

Condition (4.6) is satisfied. 

In determining the form of the 

boundaries of equilibrium cracks, 

Conditions (4.6) and (4.8) make it 

possible to eliminate the cohesive 

_.   ,...  , \ _ forces altogether from considera- Fig. 12. 1) G. 

tion of the loads acting on the body 

and to limit them to the resultant integral characteristic, the 

modulus of cohesion. Special evaluations have shown [
[
J7,   58] that 

the effect of molecular cohesive forces on the stress and shear 

fields is essential only in the vicinity of the terminal region of 

a crack having a size of the order of the width d of the terminal 

region. Thus, the cohesive forces determine the structure of the 

crack in the vicinity of its ends and, only through their integral 

characteristic K, the form of the boundaries of the crack. 
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4. Basic problems of the theory of equilibrium cracks. In Its 

most general form, the basic problem of the theory of equilibrium 

cracks may be stated In the following fashion. We are given a cer- 

tain sysuem of initial cracks and a process for loading the body, 

i.e., a system of loads acting on the body and depending on a single 

monotonically increasing parameter X.  For the initial state, the 

value of X  can be assumed to be zero. It is necessary to determine 

the form of the surface of the crack as well as to find the dis- 

tribution of stresses and shears in the body which corresponds to 

X > 0. It is assumed that the load varies quite slowly so that 

dynamic effects need not be considered. 

When the body, the load, and the initial cracks are symmetri- 

cal, thus making it possible for a system of plane cracks to develop, 

and the tensile stress increases monotonically with increasing X, 

the configuration of the cracks In the body is determined solely 

by the current load, and not by the cumulative effects of previous 

loads, as in the general case. Here, the problem of the theory of 

equilibrium cracks is formulated In the following fashion (we shall 

call this Problem A). In a body bounded by a surface 2, the boun- 

daries of an initial system of surface cracks G0 are assigned (Fig. 

12; the plane of the drawing is the plane of the cracks). It is 

necessary to find the field of the elastic elements and the boun- 

daries G of the system of surface which incurs the boundary G~ 

(which may partially coincide with it) corresponding to the given 

load, i.e., the given value of X. 

Mathematically, the problem formulated reduces to the follow- 

ing. It is necessary to construct a solution for the differential 

equilibrium equations of elasticity theory in a region bounded by 

plane slits with the contours G and by the boundary £ of the body, 
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with boundary conditions corresponding to the given load. In this 

case, the boundaries G should be defined so that Condlton (4.6) Is 

satisfied at points on these boundaries not lying on Gn, while 

Eq. (4.8) will be fulfilled for points of G lying on GQ. 

If the cracks are reversible or if the loads applied are quite 

large, so that the boundaries G do not coincide with G» at even one 

point, the form of the initial boundaries is of no significance. It 

is therefore possible, without assigning the initial cracks, to set 

up the problem of determining the boundaries G of a given configura- 

tion of equilibrium cracks directly In such a way that Condition 

(4.6) is satisfied at each point of G. Here it is assumed that the 

initial cracks are such that they ensure the formation of the given 

crack configuration on an increase in load. In this form, the prob- 

lem is called problem B. 

It might be found that no solution exists for any of the prob- 

lems posed here. Physically, however, this circumstance has totally 

different interpretations for problems A and B. If there is no 

solution to problem A, this means that the load applied exceeds 

the fracture stress, so that failure of the body intervenes when 

it is applied. The limiting value of the parameter X,   below which 

a solution exists for problem A, corresponds to the failure stress. 

The determination of the failure stress for a given original crack 

configuration and a given system of loads is an important problem 

of the theory of cracks. The nonexistence of a solution to problem 

B means that whatever the original cracks within the given con- 

figuration, they do not increase in size under the action of the 

given load, indicating that the load applied is too small. In such 

cases, we may provisionally say that mobile-equilibrium cracks are 

not formed at the given load. 
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5. The energy method of deriving the boundary condition at the 

contour of an equilibrium crack. Until now, the molecular cohesive 

forces have been considered as external forces applied to the sur- 

face of the body. This was necessary in order that we might study 

the structure of the crack In the vicinity of its er.ds. If we wish 

only to obtain the boundary condition, we can use another approach, 

considering the cohesive forces as forces within the system. On the 

basis of this approach, which occurred to Griffiths [3, 4], we can 

show the relationship between the modulus of cohesion and the other 

characteristics of the material. 

As before, let us assume that there is a certain configuration 

of equilibrium cracks in a brittle body. As in Section III, Para- 

graph 2, we will turn to a possible state of the elastic system 

which differs from the actual state only by a change in the boundary 

of the crack in the vicinity of a certain point 0 (Pig. 8). How- 

ever, in a departure from Section III, Paragraph 2, we assume that 

the characteristic dimension of the new region of the crack sur- 

face is large in comparison to the width d of the terminal region, 

although it is small as compared with the size of the entire crack; 

according to the first hypothesis presented in Section IV, Para- 

graph 1, such an assumption is permissible. In this hypothesis, 

the cohesive forces can be considered simply as forces of surface 

tension. In order to overcome these forces, some work is expended 

in increasing the area of the crack. The effect of the cohesive 

forces on the field of elastic stresses and strains can be disre- 

garded, since it is substantial only in the vicinity of the end of 

a crack, which has a size on the order of the width of the terminal 

region. 

The work 6 A expended in the transition from the actual state 
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to the possible state Is equal to the difference between the cor- 

responding surface-energy Increment 6u and the elastic energy ÖW 

liberated: 

bA    bu    bw (4.9) 

In order for the actual state of the elastic system to be an 

equilibrium state it Is necessary that 6A revert to zero, so that 

bU-bW (4.io) 

In quite the same way as in Section III, Paragraph 2, we ob- 

tain an expression Tov  6W: 

61T'U 2('-V>gWM (4.11) 

Here Nr is the coefficient of stress intensity at the point 

0, calculated without consideration of the cohesive forces. Formula 

(4.11) was established by Irwin [45-4/] In somewhat different form. 

If the form of the terminal region of a crack in the vicinity 

of a given point on its contour corresponds to the maximum inten- 

sity of cohesive forces, according to what has preceded, the ter- 

minal region will move when a new surface is formed by the crack 

and will not be deformed, so that the work opposing the cohesive 

forces in the formation of a unit of new surface area is constant 

and equals the surface tension T0. Consequently, ÖU = 2TQöS (the 

2 is made necessary by the formation of two crack surfaces in frac- 

ture) . Hence, from (4.10) and (4.11) we obtain 

■V„  I (4.12) 

Comparing (4.12) and (4.6), we obtain an expression which re- 

lates the modulus of cohesion K determined independently in accor- 

dance with (4.3) to the surface tension T0 and the elastic con- 

stants E and v of the material 

K*     •|//" (4.13) 
i  v" 

- 45 - 



6. Experimental confirmations of the theory of brittle frac- 

ture. Quasibrlttle fracture. Beginning with Griffiths [3, 4], various 

investigators attempted to verify experimentally the theory of 

brittle fracture. We do not propose to make any detailed analysis 

of all these works here, but will devote ourselves onlc' to a few 

of the most characteristic, referring the reader to specialized 

papers for details and discussions of the numerous other studies 

[62, 55, 74-78]. 

In Griffiths' work [3], the following experiments are described 

and their results given. Cracks of various lengths 21 were formed 

on spherical glass flasks and cylindrical tubes whose diameters D 

were sufficiently large so that a special test demonstrated the 

absence of any effect caused by the diameter of the vessel on the 

results of the experiments. The tubes and flasks were then annealed 

in order to relieve the internal stresses formed during the genera- 

tion of the cracks and then were loaded internally by hydraulic 

pressure until they failed. The failure stress p0 corresponding 

to each crack length 2_1 was measured in the vessels. 

In accordance with the theory presented above, it was found 

that the failure stress pn at which a given crack became an unstable 

mobile-equilibrium crack depended only on the length of ';he crack 

21 and the modulus of cohesion K, so that dimensional analysis 

[79] showed that p„ - aK J  1, where a is a nondimensional constant. 

Consequently, for a given material, p0 J 1 should be constant (in 

complete conformity with (2.1)). 

Griffiths1 experiments (see Table) thoroughly confirmed that 

this value was a constant and thus confirmed the theoretical system 

advanced above. 

The experiments of Roesler [53] and Benbow [54] in which stable 
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TABLE 

C«|wpii'i ri.nr   KO.l0u 1 IUl.Hlll.U"! 

,, i n  3 ,.      * VtY] 3 a 3» ^       P.   
(aioituu) (.lliillMU) (iJiyiiTu ."Hofiu'l (AWiluu) (a»UMM) ($yHTM awBll*) ft i / 

0.15 1.48 864 237 0.25 0.58 678 240 
U.27 1.53 623 22.N U.Xi 0.71 580 232 
u..V, 1 .60 482 251 0.38 0.74 526 22(1 
0.89 2.00 306 244 0.28 

0.26 
0.30 

0.61 
0.62 
Ü.GI 

655 
674 
816 

2'..", 
243 
■S,K 

1) Spherical retorts; 2) cylindrical tubes; 3) Inches; 4) lbs/in . 

conical cracks were formed and which are notable for their elegance, 

are of special interest for confirming the theory of brittle frac- 

ture. Figure 13 shows the system by which these experiments were 

performed; a photograph of conical cracks In fused quartz taken 

from the article by Benbow [54] is given In Fig. 14. The cracks 

were generated by pressing a cylindrical steel punch with a flat 

end into specimens of glass [53] and fused quartz [54]. In accor- 

dance with what has been presented above, the diameter s_ of the 

base of the conical crack depended only on the diameter d of the 

Fig. 13. Fig. 14 

base of the punch, the pressure P on the punch, the modulus of 

cohesion K, and the Polssons' ratio v. Since the corresponding 

problem of elasticity theory is naturally formulated so that Young's 

modulus is eliminated, it is not necessary to include Young's modu- 

lus among the determining parameters. Dimensional analysis gives 
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Here, cp is some nondlmensional function of it3 own arguments. 

Experiments carried out with punches of three diameters on 

eleven glass samples [53] thoroughly verified the existence of the 

universal relationship (4.14). It follows from (4.14) that for 

large P, when the effect of the first argument of the function cp 

becomes negligibly small, "self-modeling" arises and the following 

equation is satisfied: 

*-(-£)\<v) (4.15) 

Figure 15 shows a graph taken from the article by Benbow [54], 

showing _s as a function of P according to the aforementioned ex- 

periments with fused quartz carried out under conditions correspond- 

ing to the self-modeling regime. As may be seen, the experiments 

being considered convincingly confirm Eq. (4.15) and thereby the 

system presented above. 

The experiments described were carried out on materials which 

can be considered to be totally brittle. This is expecially true of 

fused quartz. Benbow [54] cites some facts indicating that the 

mechanism of crack formation in fused quartz is closer to pure 

brittle fracture than is this mechanism in glass: cracks in glass 

grow in size for a long time under constant load, while cracks in 

fused quartz rapidly Increase in size during the same time and 

then remain constant; after the load is relieved, the cracks in 

the glass remain clearly visible, while those in quartz are unnotlce- 

able, etc. 

However, the significance of the theory of brittle fracture 

was found to go far beyond the limits of its applicability to the 

comparatively rare totally brittle material. Experimental studies 

have shown that when cracks are formed, some materials which seem 

to be completely plastic in ordinary tests fail in such a way that 
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plastic deformation, while It does occur, is centered In a thin 

layer in the vicinity of the surface of the crack. 

Thus, Fehlbeck and Orowan [28] conducted experiments on the 

failure of low-carbon steel plates w^th applied cracks under con- 

ditions corresponding to Griffiths' system of uniform elongation. 

The results of the experiments agreed well to Griffiths' formula 

but the magnitude of the surface-energy density determined from 

these experiments proved to be approximately three orders of magni- 

tude greater than the surface tension of the material studied. It 

exhibited satisfactory correspondence with the specific work of 

plastic deformation in the layers of the crack near the surface 

as determined by independent measurements. 

Basing their work on this and other analogous experimental 

results, Irwin [23] and Orowan [24] introduced the concept of 

quasibrlttle fracture, making it possible to expand greatly the 

limits of applicability of the theory of brittle fracture. Accord- 

ing to this concept, the theory of brittle fracture was extended 

to cases where plastic deformation is centered in a thin surface 

layer of the crack. In this case, the energy T expended in the 

foi-mation of a unit of crack surface is expressed as the sum of the 

specific work involved in overcoming the molecular cohesive forces 

— the surface tension T0 — and the specific work T, expended on 

plastic deformation. 

T     Tt + T} (4.16) 

The formal extension of the approach presented above to quasi- 

brittle fracture was carried out 1n the following fashion (Fig. 

16; the area of plastic deformation near the surface is cross- 

hatched). We imagine the entire plastic region to have been cut 

out and the end of the crack to have been transferred to the end 
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of the plastic region. This can be done If we assume that the forces 

acting from the plastic region to the elastic region are external 

forces applied to the surface of the crack. After this, all the 

Pig. 15. Fig. 16, 

preceding considerations involved in the assumption that the plas- 

tic region is thin remain unchanged and, if we again use the hypo- 

thesis of a stable terminal region of the crack surface (which 

also includes the boundary between the elastic and plastic regions), 

the modulus of cohesion is expressed in the following fashion: 

K  =  \' G{t)dt     -if *kT 
(4.17) 

Here G(t) is the distribution of normal stresses acting at 

the boundary between the elastic and plastic regions. 

When it is possible to disregard the contribution of the mole- 

cular cohesive forces to the integral (4.17) in cumpai'lson to the 

contribution of the stresses acting in the region in front of the 

actual end of the crack and having the order of magnitude of the 

yield point an, we obtain an estimate of the modulus of cohesion 

/r-l/S*2«.vT (4.18) l_v«~-c" I  " 

Let us emphasize that the yield point o„ in the vicinity of 

the end of the cracK can differ from the yield point obtained in 

tensile-testing large specimens. 
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The concept of quasibrlttle fracture Is similar to some ex- 

tent to the concept of the "plastic particle" at the ends of a 

groove with a zero radius of curvature which was Introduced in 

the classic monograph by Neuber [80]. 

We shall speak further of cracks formed in brittle fracture, 

bearing in mind the possibility of extending the results obtained 

to the case of quasibrlttle fracture. It is understood that it is 

necessary In this case to consider the irroversibility of cracks 

formed in quasibrlttle fracture as definite. 

7. Cracks in tnin plates. For thin plates where it is possible 

to assume that a plane stressed state exists, all equations de- 

rived for the case of plane deformation hold true if we replace E 

by (l-v ) and assume that the modulus of cohesion has some other 

vaiue K,. Repeating the derivation of Formula (4.13) for a plane 

stressed state, we obtain 

*V -.-w.T (4.19) 

Let us note that, as experiments have shown, the surface- 

energy density T in the case of quasibrlttle fracture increases 

somewhat with a reduction in the thickness of the plates [48]; 

this is explained by the expansion of the region of plastic deforma- 

tion near tne surface. The work by Frankland [8] makes an attempt 

at approximate theoretical calculation of this phenomenon. 

Of these two cases, having in mind the complete analogy of 

the formal investigation of the plane stressed state and plane 

deformation, we shall consider only plane deformation further. 

V. Specific Problems of the Theory of Equilibrium Cracks 

In thie section we shall consider the solutions available at 

the present time for various specific problems in the theory of 

cracks. Individual examples will be of illustrative character and 
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the majority of the problems cited will be of interest by themselves. 

1. Isolated rectilinear cracks. In this paragraph and the 

next, we shall study isolated mobile-equilibrium cracks over whose 

entire contour the maximum cohesive-force intensity is reached. 

For these cracks, the problem reduces to determination of the crack 

contours corresponding to the given load in such a way that Con- 

dition (4.6) is satisfied on these contours, and is a particular 

case of problem B formulated above. It is assumed that the initial 

cracks permit formation of such cracks; the necessary requirements 

imposed on the initial cracks for reversible or irreversible cracks 

are easily deduced from the solutions obtained. 

Let us consider, under the conditions of plane deformation, an 

isolated rectilinear mobile-equilibrium crack in an infinite body, 

the crack extending along the x axis from x = a to x = b. Let p(x) 

be the distribution of normal stresses arising at the site of the 

crack in a continuous body under the same loads. This distribution 

Is determined by the general methods of elasticity theory and we 

will assume it to be given. It is possible to show, using the solu- 

tion advanced by N.I. Kuskhelishvili [2, 18] that the tensile stresses 

in the vicinity of the ends of the crack, calculated without con- 

sidering the cohesive forces, go to infinity according to the rule 

o„ = N I KT+ . . . 
wnere 

i,       i.       

X. -   ' \P (*) V1-^-d*. N> - ,[ \ p (*) l/4=±dx (c , N 
" a/i-oj' K ■ r   »—• n/»_,jfwr i-i     15-1; 

a a 

are the values of the coefficient of stress intensity at points a 

and b respectively. Satisfying Condition (4.6) at these points, we 

obtain expressions which determine the coordinates a and b of the 

ends of the crack in the form 
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u   6   

f p {x) l/TEj ** = A' Vi^.     \ P M Vf-rü *" - A' K^i  (5 •2) 
* (1 u 

In particular, if the load applied is symmetrical relative 

to the center of the crack, at which it is convenient to locate 

the coordinate origin — a ■ b = 1 and Eqs. (5.2) reduce to a single 

expression which determines the half-length 1 of the crack: 

\ <"'""''■   * (5.3) 
J \' l* — r'       y-ii 
(I 

Let us emphasize that since p(x) is an assigned function, 

(5-2) and (5.3) are terminal equations. These equations determine 

the positions of the ends of an isolated rectilinear mobile-equilib- 

rium crack at the load in question if this load makes it possible 

for such a crack to exist. 

Masubuchi [82] has pointed out a method for calculating the 

rate of elastic-energy liberation dw/dl for an isolated symmetrical 

crack based on a trignometric representation which he proposed for 

the stresses p(x) and shears v at points on the surface of the 

crack. 

f r-      I. \ 

i p.ti 

' v '  w — mi I) '     2 
i. i -.I 

As  Masubuchi   showed, 
OC 

&\V En      K\  ,    . vo 
-r^wTi-V,--,"'-1^ (5.5) 

Equating this expression to 4T, where T is the surface energy 

density, we can obtain an expression which relates the stresses 

applied to the size of the crack, but in a form far more complex 

than (5.3). 

Let us analyze certain examples. Let a crack be kept open by 

a uniform tensile stress applied at infinity. As we have already 

noted, this problem was first considered by Griffiths [3, 4]. In 
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this cane, p(x) -  p and Eq. (5.3) yields 

/  ~A1 (5.6) 

Equation (5.6) is represented by the broken line in Fig. 17. 

Ac may be seen, the size of the mobile-equilibrium crack decreases 

with increasing tensile stress and 

this indicates that the crack in 

this case is an unstable mobile- 

equilibrium crack. Despite this in- 

stability, the dimension 1 as deter- 

mined from Eq. (5-6) haa physical 

significance. To be more precise, 

if there was a crack with a length 
Fig. 17. 

21,. in a body to which a constant 

tensile stress p0 is applied at infinity, this crack will not widen 

when 1_0 < 1, (and closes in the case of reversible cracks), while 

when 1„ > 1, it widens without limit. Thus, the dimension 1 plays 

the role of a critical dimension (for a more detailed treatment of 

this, see Section V, Paragraph 3). 

It is obvious that in this case the instability of mobile 

equilibrium corresponds fully to the essence of the matter and, 

notwithstanding the opinion expressed by Ya.I. Frankel' [5], is 

not due to Griffiths' incorrect representation of the geometry of 

the crack ends. 

If there Is    tress at infinity and the crack is maintained 

by applying a uniformly distributed pressure to portions of its 

surface (0 < x < 1~), while the rest of the crack surface (l_ < x 

A < l) is free of stresses, the half-length 1 of the mobile-equilib- 

rium crack is determined [58J from the expression: 

K-arc8,nl ;   .,.; (5.7) 

- 52* - 



Equation (5.7) Is represented in Fig. 17 by solid lines ob- 

tained from one another by a transformation of similitude. It is 

obvious that the opening of a crack, i.e., the appearance of an 

open section In it, is possible only if ln is no less than the cor- 

responding size of a mobile-equilibrium crack kept open by a uni- 

form tensile stress P~ at infinity, as determined by Eq. (5.6). 

Consequently, all solid lines in Pig. 17 begin at the broken line. 

The limiting case of Eq. (3.7) is curious, corresponding to 

p„ going to infinity while 1_„ goes to zero, so that 2prl_0= const = 

= P. This case corresponds to a crack kept open by concentrated 

forces applied to opposing points on its surface. The half-length 

of the cracK is determined here by the expression 

<-£ (5-8) J/v- 

We should note that (5.6) and (5.8) can be obtained correctly 

to within a constant multiplier by recourse to dimensional analysis. 

Actually, for example, the size of a crack kept open by concentrated 

forces is determined only by the magnitude P of these forces and 

by the resultant cohesive-force characteristic, the modulus of co- 

hesion K. It is obvious that the modulus of elasticity and Poisson's 

ratio are not included among the determining parameters, since the 

corresponding problem of elasticity theory is naturally formulated 

in terms of stresses so that these factors are not included among 

the determining parameters. Considering the dimensions of P and K, 

we see that only one combination with the dimensions of length can 

2  2 be formed from these quantities — the ratio P /K — and that it is 

impossible to construct any nondimenslonal combinations. Thus, by 

virtue of the basic theorem of dimensional analysis [59]* the length 

2/2 
of a mobile-equilibrium crack should be proportional to P /K , wnile 

the coefficient of proportionality should be a universal constant 
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in full conformity with Eq. (5.8). 

Further, let the crack be maintained by two equal and opposite 

concentrated forces P whose points of application are at a distance 

L along the common line of action of the forces; it is assumed 

that the crack is perpendicular to the line of action of the forces 

and that it is symmetrical [58]. 

In this case, the distribution of tensile stresses at the 

site of the crack in the solid has the form 

P^-ä5(?W[1-v+2(l+v)?f2r]      (5.9) 

(the origin of the coordinates is located at the center of the 

crack, at the point of intersection of the line of the crack and 

the line of action of the forces). Applying Eq. (5.3), we obtain 

an expression which determines the size of the crack in the follow- 

ing form: 

Figure 18 is a graph of P/K J L as a function of the relative 

length of the crack l/L for v = 0.25. As may be seen, when P > P_, 

each value of P corresponds to two lengths of the mobile-equilibrium 

crack. Here, when P is increased, the shorter length decreases and 

the greater length increases. The state of mobile equilibrium cor- 

responding to the shorter length is unstable; the corresponding 

branch of the curve of load as a function of length is represented 

by the broken line in Fig. l8. The states of mobile equilibrium 

corresponding to the greater length are stable; the corresponding 

branch Is represented by a solid line. The shorter length L, plays 

the critical role for a given load P, so that initial cracks in a 

body whose length Is less than 21_, do not widen under the action 

of an applied force of magnitude P (close in the case of reversible 

cracks), while those of greater length widen until the crack reaches 
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the second (stable) equilibrium size*. When P < P , Eq. (5.10) 

has no solution, i.e., no solution to the problem being considered 

exists. This means that whatever the length of the original crack, 

it does not widen under the given load to form a mobile-equilibrium 

crack. The critical value P~ of the forces corresponds to the dimen- 

sion l_n of the mobile-equilibrium crack and is not zero. 

The work of Romualdl and Sanders [52] dealt with the interest- 

ing problem of the effect of riveted stiffening ribs on crack pro- 

pagation. This problem is schematized by the authors in the follow- 

ing fashion (Fig. 19). An infinite plate is tensioned by a uniform 

stress pn in a direction perpendicular to the crack. The action of 

Fig. 18. Fig. 19. 

the rivets and the stiffening ribs is represented by two symmetri- 

cally distributed pairs of opposing concentrated forces with magni- 

tudes equai to P and may be assumed to be given (in order to simplify 

the problem somewhat). 

Substituting the corresponding stress distribution in Eq. 

(5.3) and computing** the elementary, although somewhat unwieldy, 

integrals, we obtain the relation between the applied load and the 

half-length 1 of the equilibrium crack: 

- 57 - 



roVz __ i'■■   p 
• .   ,   !'" 

i-v 12(1-;v);/„"- 

.    2(1-;-v)(2/;     .i -4)_  ,   -„    (l-rv)(g-r/i)(2/'-/l-<) 1   |    VJ /f   ,,\ 
/I« l.i-/;     3 '  ,/"     ,V (,l + U - 2) \/A-h+Z   | " a YT lD*XXJ 

ft - Y",    / = -j   ,     B - ft» + i"» + i.     -1 - ^ - 4'"* 

The results of the calculation are shown graphically In Fig. 

20 for v a  0.25, P/K JL - 0.2, and several values of the param- 

eter y /L.   AS may be seen, when there are no stiffening ribs, mobile- 

equilibrium cracks are unstable. The effect of the stiffening ribs 

Is manifested first of all in an increase in the size of the mobile- 

equilibrium crack at the given load and, what is especially impor- 

tant, in the appearance of stable mobile-equilibrium states at 

rather low values of y0/L> i.e., when the rivets are quite close 

together. The appearance of stable mobile equilibrium states sub- 

stantially alters the character of crack development (for greater 

detail, see below). 

The authors experimentally observed transitions of a crack 

from unstable mobile-equilibrium states to stable states; their 

experiments, which were carried out on aluminum-alloy plates both 

with and without stiffeners, showed a considerable increase in the 

sizes of mobile-equilibrium cracks at constant p„ due to the pre- 

sence of the ribs. Reference [52] also gives an experimental deter- 

mination of the coefficient of stress intensity at the ends of the 

crack for several stable and unstable mobile-equilibrium states. In 

the absence of stiffening ribs, the measurements of the coefficient 

of stress intensity were carried out directly, on the basis of the 

tensile-stress decline in the vicinity of the ends of the crack 

(at distances known to be larger than the size of the terminal 

region of the crack). In the presence of stiffening ribs, the coef- 

ficients of stress Intensity were measured indirectly. Satisfactory 
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agreement of the intensity coefficients was obtained in all cases 

with the exception of two instances where the Intensity coefficients 

were approximately 15$ smaller. However, these two experiments, 

which were carried out on the same specimen — in one case on a 

stable and in the other on an unstable crack — gave closely similar 

values for the coefficients of stress intensity. (The somewhat lower 

value of the coefficient of intensity at the end of the stable 

crack can be explained by the considerable dynamic effects noted 

by the authors in the transition from this state to the unstable 

state.) Consequently, it can be assumed that the discrepancy ob- 

served was the result of some peculiarity of the particular speci- 

men. Thus, these experiments are a direct confirmation of the general 

system developed above. 

This investigation can be extended directly to rectilinear 

cracks in an anisotropic medium which lie in the planes of elas- 

tic symmetry of the material. Wilmore [21] and Stroh [83] dealt 

with the problem of a rectilinear crack in an orthotropic infinite 

body subject to a uniform stress field. Reference [83] also extended 

the results obtained in [16] for a rectilinear crack in an aniso- 

tropic body acted upon by an arbitrary stress field, and also found 

the coefficients of stress intensity at the ends of the crack for 

this problem. Reference [84] presented a solution of the general 

problem of a rectilinear mobile-equilibrium crack in an orthotropic 

body acted upon by an arbitrary stress field symmetrical about the 

line of the crack. 

2. Axially symmetrical plane cracks. If a discoid mobile- 

equilibrium crack with a radius R is maintained in an infinite body 

acted upon by a certain axially symmetrical load, the tensile 

stresses in the vicinity of the cracx outline as calculated without 
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considering the ooheelve forcer,, goes to infinity according to 

the law 
n 

a   — N N -    '   \ rp ('),lr (i-   io\ a"- T*  ' N   Trm)ffl?Z {J
-
12) 

where p(r) Is the distribution of tensile stresses at the site of 

the cracK in a continuous medium acted upon by the same loads. Ac- 

cording to the general Eq. (4.6), the equation which determines the 

radius R of a mobile-equilibrium crack takes the form 

±1£L K]/JL (5.13) 
. ]/ U- — r- <        - m v 

This equation was established in [56, 57]; its derivation was 

based on the use of a method of 

solving axially-symmetrical prob- 

lems in elasticity theory using the 

Fourier-Hankel integral transforma- 

tion, as developed in the work by 

Sneddon [14, 15]. In particular, 

if a mobile-equilibrium crack is 

kept open by a uniform tensile 

stress p0 at infinity, p(r) = pQ 

^'        ' and the radius of the mobile-equilib- 

rium crack is determined by the expression 

11     jjg. (5.14) 

This problem was first solved by Sack [20] by an energy method 

completely analagous in principle to the corresponding plane problem 

considered by Griffiths [3, 4]. 

If there la no tensile stress at infinity and the crack is 

kept open by a uniformly distributed pressure p0 along the part of 

its surface 0 < r < rn, while the rest of the crack surface r„ < 

< r < R is free, the radius of the mobile-equilibrium crack is 
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determined from the relationship 

p^n^/M*?!       (5-i5) 
A'    | ■ 

In this case, as in the case of a plane crack, the radius 

rv of the curved part of the crack surface should not be less than 

the critical radius determined from Eq. (5.14) for the pressure p_. 

In particular, if a discoid crack is kept open by equal and 

opposed concentrated forces p applied to its surface, the radius 

of the mobile-equilibrium crack is determined by the formula 

R    , ''■]' (3.16) 

In complete analogy to the plane cracks, Eqs. (5-14) and 

(5.l6) can be obtained correct to within a constant nondimensional 

multiplier by dimensional analysis. 

If a discoid crack is kept open by equal and opposed forces P 

whose points of application along the common line of action of the 

forces differ from one another by a distance 2L, the radius R of 

the mobile-equilibrium crack is determined from the equation 

' ' «' \  ■ A--) v' ■ 1 - v ■ w) 

The solutions presented were given in [56]; the explanation 

of the equations obtained is completely analogous to the correspond- 

ing cases for rectilinear cracks. 

3. Study of the development of isolated cracks with propor- 

tional loading. Stability of isolated cracks. Under this heading 

we shall consider the problem of the development of a given iso- 

lated initial crack under proportional loading — a particular case 

of problem A. A complete study is to be made for the case of sym- 

metrical loads and initial cracks and simultaneously for recti- 

linear and discoid cracks. Let us consider an example of the prob- 

lem of development of a nonsymmetrical Initial crack which will 
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cast light upon the procedure for solving this problem. 

With proportional loading, the tensile stresses at the crack 

site in a continuous medium under a given load are proportional to 

the loading parameter X, GO that p(x) ■ Xf(x) and p(r) = Xf(r) in 

the cases of rectilinear and discoid cracks, respectively. Intro- 

ducing the nondimensional variable %,  which equals x/l and r/R, 

respectively, for these cases, we may reduce Eqs. (5-3) and (5.12) 

to the form 

■-^—f(.) (5-18) 

where cp(c) is determined by the following equations in the respec- 

tive cases: 

,(e) ..\Vl\Lj^\\  ^c)^\Vcii^§-Y (5.19) 
L   j »i — i  J I   « r»—■ s J 

and £ denotes either the half-length 1 of the crack or the radius 

R of the crack. Thus, the dependence of crack length on the pro- 

portional-loading parameter X  is determined completely by the length 

of the initial cracK and the function cp(c) corresponding to the 

load distribution in question. 

We can obtain definite results for the behavior of the func- 

tion <p(c) with the most general assumptions. We shall not consider 

cases where the crack is kept open by concentrated forces applied 

to its surface, but assume that the crack is kept open by loads of 

any type — e.g., by concentrated forces applied from within the 

body and perhaps by distributed loads applied to the surface of the 

crack. In this case, the functions p(x), p(r), and consequently, 

f(c4) are definitely bounded. For small £ we obtain from (5.19) 

the expressions 

respectively. 
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Let us assume that the tensile luadc applied to the body on 

each side of the crack are bounded and, more precisely, equal to 

Xp. We then have the epxressions 
CO CO 

\ p(x)«te-XP,        \/{cl)<li= £ 
— CO ,', 

(5.21) 
p (;•) /• dr 

XI' 
W<«ö**-ss 2ite' 

«P(0 = -75- + tp(c) -—j-+ • 

Prom these and from (5.19)> we obtain asymptotic representa- 

tions with c -*■ cx> for the functions cp(c): 

(5.22) 

Thus, under the assumptions which we have made, cp(c) tends to 

infinity when c -*■ 0 and c -*■ «,.   By virtue of the bounding of f(?£), 

the integrals in Expressions (5.19) do not tend to infinity for 

any c, and thus cp(c) has no Increasing segments and, consequently, 

has at least one positive minimum and at least one increasing and 

one decreasing segment. If the forces applied to the body on each 

side of the crack are unbounded, the function cp(c) has no increas- 

ing segments and, consequently, no minima. This is true, in particu- 

lar, in the case of a uniform tensile stress field where p = Xp 0 

and 

<p(c) = . <P(c) 
1 (5.23) 

respectively, for rectilinear and axially symmetrical cracks. 

By definition, an equilibrium crack is stable if no rather 

small cnange in its contour leads to the creation of forces which 

tend to remove the body still further from its disturbed equilibrium 

state. It is obvious that stationary-equilibrium cracks are always 

stable. In order for mobile-equilibrium cracks to be stable, it is 

necessary that their size increase with Increasing loading param- 

eter X. Actually, we assume that the corresponding dimension of the 
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mobile-equilibrium crack £ increases when the load increases. If 

wo Increase the length of the crack while leaving the load un- 

changed (X - const), the force pulling the crack apart will be 

larger than the equilibrium force. Consequently, equilibrium will 

be disturbed and the action of the excessive force on the crack 

will tend to widen it. On the other hand, if the size of the crack 

is somewhat greater than its equilibrium value, the equilibrium is 

displaced in the other direction and the crack, if it is reversible*, 

tends to close. If, on the other hand, the equilibrium dimension 

£ of the crack decreases with Increasing parameter X  when the crack 

is near a given equilibrium state, it is obvious that a small change 

in this dimension at constant load will give rise to forces which 

create a further deviation from the equilibrium state. The corre- 

sponding equilibrium state will be unstable. Thus, the equilibrium 

state of a crack is stable if it satisfies the following condition 

for a given c and X: 

dc f>0 

Differentiating (5.l8) with respect to X, 

dc        Y- 

(5.24) 

(5.25) 

From this and (5.24) we obtain the condition for stability 

for a mobile equilibrium state in the form 

q>'(c)>0 (5.26) 

Thus, only those states of mobile equilibrium which correspond 

to rising segments of the curve of cp(c) are stable. 

We now have everything necessary for complete study of the 

development of an isolated symmetrical crack under proportional 

loading. Let our system of loads applied to the body correspond to 

the function rp(c) shown in the graphs in Fig. 21. 
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Let ua first consider the case where cp(c) —► °° as c —► » (Pig, 

21a). In particular, this case occurs when the loads applied to 

both sides of the crack are bounded. Let the size of the Initial 

crack c, correspond to the unstable branch of <p(c). Then, as the 

parameter X increases, the length of the crack remains constant 

until 2 reaches a value at which the Initial crack of size c, be- 

comes a mobile-equilibrium crack. Since mobile equilibrium is un- 

stable, the crack then begins to widen under constant load until 

the next stable equilibrium state is reached*. With a further in- 

crease in X, the size of the crack; Increases continuously until a 

load is reached which corresponds to the maximum of cp(c), again 

changes jumpwise on transition to another stable branch, and then 

increases continuously with increasing X. The path of the point 

representing the variation of the crack is shown in Fig . 21a and 

designated by the numeral 1. 

Now let the dimension c? of the initial crack correspond to 

the stable branch of (c). Then the dimension of the crack remains 

unchanged until a load is reached at which the crack becomes a 

mobile-equilibrium crack, after whJch it increases continuously. 

The path of the representative point is shown in Fig. 21a and keyed 

there by the numeral 2. 

As may be seen, the body does not fail at any value of the 

parameter' X in the case under consideration. If X is less than 

its critical value, which corresponds to the lowest of the minima 

of cp(c), It will not widen under the action of this load, however 

large the initial crack. The dimension corresponding to this criti- 

cal value of X for a mobile-equilibrium crack is finite. 

Among other things, it follows from what has been said that 

if a crack is kept open by forces applied from within the body 
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and perhaps by distributed loads applied to the surface of the 

crack, and If the forces applied to each side of the crac*. are 

bounded, there exist a critical value for the parameter X, and 

for all values of X greater than the critical value at least one 

stable and one unstable mobile equilibrium state. 

Fig. 21. 

Let us turn to the case where cp(c) —► 0 as c —► °o (Fig. 21b) . 

If the size c, of the initial crack corresponds to a stable branch 

of cp(c), the cracK will not widen until a load is reached at which 

the initial crack becomes a mobile-equilibrium crack. The crack 

then increases continuously with increasing X until a value of the 

parameter X is reached which corresponds to a maximum. If this maxi- 

mum is exceeded in the slightest, there is no longer a solution to 

the problem — the body fails. The path of the representative point 

is shown in Fig. 21, where it is keyed by the numeral 1. If the 

dimension of an initial crack c? corresponds to the unstable right 

branch of cp(c), the initial crack does not increase in size with 

increasing parameter X until a value of X is reached at which the 

initial crack becomes a mobile-equilibrium crack. If this value of 

X is exceeded even slightly, the body falls. If the dimension of 

an initial crack c,, corresponds to the unstable left branch of the 

curve of cp(c), the cracK widens for c_ < c„ in the same fashion as 

was noted for case 2; when cn > c„, the crack develops in a manner 
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analogous to case: 1, Fig. 21a until a maximum is reached, whereupon 

failure of the body occurs. 

For other forms of the curve cp(c), the investigation can be 

carried out easily by combining the cases considered. Knowledge of 

the function cp(c) makes it possible to describe exhaustively the 

development of an isolated symmetrical crack in an infinite body 

subject to proportional loading. For reversible cracks, it is possible 

to trace the change in the size of the crack, even with a nonmono- 

tonic change In load, by using the curve of cp(c). It is curious to 

note that in this case, the size of the crack decreases stepwise 

when the load decreases, generally speaking on transition through 

other critical equilibrium states, rather tnan with an increase in 

load. 

Very recently, L.M. Kachanov [84a] conducted a study which 

generalized the preceding considerations for cases in which the 

modulus of cohesion is taken into account as a function of time. 

This study is of basic importance in connection with the problems 

of so-called "long-term strength." 

The study made in this section is based on [59]• 

Let us now consider for one 

;■■ imple case the solution to the 

problem of the development of a 

nonsymmetrical initial crack. Let 

there be in an infinite unloaded 

6*   ' body a rectilinear initial crack 

whose ends have the coordinates x ■ -an and x = b~ (to be mure 

specific, let us assume that bQ < aQ), and let equal and opposing 

concentrated forces P be applied to opposite points on the surface 

of the crack (points which may be assumed to correspond to x = 0). 
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The magnitude of the force P serves aa a loading parameter. Ac- 

cording to (5.1), the coefficients of tensile-stress intensity NQ 

for x = -a and x = b are equal respectively to 

V =  ''      I/JL  V   __£ 1/ « 
(5.27) 

When P < P, , where 

Pi5 _ (ki -;- «11) h 

& '     >>, (5.28) 

both coefficients N and N, are less than KAr, so that the crack ab ' 

does not develop either on the right or on the left. 

When P -  P,, the coefficient N, becomes equal to the quantity 

K/?V, the crack becomes a mobile-equilibrium crack, and its end b 

begins to move to the right, progressing in accordance with the 

magnitude of the force applied in accordance with the expression 

i'L __&(«,-;-&) (5.29) 
A-        ,;„ 

In this case, while P < P„, where 

g-2«9 (5.30) 

the coefficients N < K/TT and the left end of the crack does not 
3. 

move. 

When P = Pp, b - -ao» so that the crack becomes a symmetrical 

mobile-equilibrium crack, and when P > Pp, its development continues 

according to (5.8). 

The development of an initial crack with a change in force is 

shown in the graph in Fig. 22. 

4. Cracks emerging at the surface of a body. If cracks emerge 

at the surface of a body, it becomes difficult to obtain effective 

analytical solutions. This is due to the facts that the correspond- 

ing region cannot be represented on a half-plane by rational func- 

tions and that Muskhelishvili' s method does not make ir, possible 
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to obtain an effective solution in finite form; it 3 s thus neces- 

sary to resort to numerical solutions. 

Pig. 23. Fig. 24. 

At present, a number of numerical solutions have been obtained 

for the problem of cracks emerging at the boundary of a body; in 

all cases for which calculations were made, the mobile-equilibrium 

states were unstable 

Bowie [22] dealt with the problem of a system of k symmetri- 

cally distributed cracks of identical length which have emerged 

at the free surface of a round cutout in an infinite body (Fig. 23). 

The body is under tension at lnlfinity by a tensile stress p0 ap- 

plied on all sides. Bowie used Muskhelishvili's method to calculate 

the stresses and strains. Here, in order to obtain a solution in 

effective form, the author used an approximate polynominal repre- 

sentation of an analytical function which reflected the exterior 

of the circle and the slits running into it onto the exterior of a 

unit circle. In order to determine the dimensions of the mobile- 

equilibrium cracks, Bowie used Griffiths' energy method directly, 

calculating the rate of liberation of elastic energy. Numerical cal- 

culations were made in this work fur one crack and for two diamet- 

rically opposed cracks; here It proved necessary, in order to insure 
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sufficient accuracy of calculations, to retain about thirty terms 

in the polynominal representation of the reflecting function. The 

The results of Bowie's calculations for the cases k ■ 1 and k = 2 

are shown in Fig. 24, where the broken line represents the corre- 

sponding cracks in an infinite body. It follows from these cal- 

culations that when L/R > 1, the fracture stress for two cracks 

with a circular cavity Is very close to the fracture stress for a 

crack of length 2(L -I R) , so that the cavity itself has virtually 

no Influence. Further, when the length oi the crack is small, it is 

obvious that the conditions of mobile equilibrium are defined by 

the fracture stresses directly on the surface of the circle. As 

we know, in the case ol' unlaxial tension the greatest fracture 

stress at the edge of the cavity is 3Pn> but 2p„ in the case of 

omnidirectional tension. It follows from this that the ratio of 

equilibrium loads in tnese cases should approximate 2/3, and this 

is also confirmed by Bowie's calculations. 

The problem of a rectilinear crack emerging at the rectilinear 

free boundary of a half-space (Fig. 25) was considered independently 

and by different methods by Wigglesworth [85I and Irwin [51]. 

Wigglesworth [85] studied the case of arbitrary distribution 

of the normal and tangential stresses along the banks of a crack. 

With a symmetrical stress distribution, he reduced the problem to 

an integral equation for the complex dislocation w(x) = u(x) + iv(x) 

of points on the surface of the crack. 

1 

\L{x,t)w{t)dt-       i!Lz*>^p{x)dx (5.31) 
0 u 

Here L(x, t) is a certain singular integral operator and 

p(x) = a(x) + 1T(X); a(x) is the distribution of the normal stresses; 

T(X) is the distribution of the tangential stresses. Equation (5.31) 
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is solved In [85] by the method of integral transformations. De- 

tailed calculations are made for cases where the surfaces of the 

crack and the boundary arc free from stresses and tensile stresses 

P0 are applied parallel to the boundary of the half-space at in- 

finity. 

For stresses in the vicinity of the end of the crack, the 

author obtained the following equation in this particular case: 

SJH <SU     L.58G V - posin -|- 

n,on/T      . 3ie (5.32) 
5« — ey + tiQxu =» — 0.793 y — /»„snupcxp -J- 

On the  continuation of  the   crack  (cp =  TT) ,   we  find 

os = c1/ = 0.793/>0]/-L + ..,1  o,„-0 (5.33) 

Prom this  and  from   (4.6),   the  expression  for  the   length  of 

a mobile-equilibrium crack  is  written   in  the  form 

1 = -.   S ■=   1.61 5; (5.34) 

Irwin [51] studied only the following particular case. He re- 

presented the unknown solution as the sum of three fields. The 

first field corresponded to the crack (-1 < x < 1 y ■ 0) in an 

infinite body subject to constant tensile stresses p„ at infinity; 

the second field corresponded to the same crack under normal stresses 

Q(x) applied to its surface symmetrically with respect to the x 

and y axes; the third field corresponded to the half-space x > 0 

without a crack, at whose boundary x = 0 the normal-stress distribu- 

tion P(y) was applied symmetrically with respect to the x-axis. 

Satisfying the boundary conditions at the free boundary and the 

surface of the crack, Irwin obtained a system of integral equations 

for P(y) and Q(x); 
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\Q{x)  zyttj,      i+     + _2)dx+ 

lyp+P     üJ" : <;) '       > (5.35) 
CO 

(i 

which he solved by the method of successive approximations. The 

first approximation gives an expression for the length 1 of a 

mobile-equilibrium crack: 

.n-1.0Jo-^0
3      ^s 

which, as may be seen, differs negligibly from the more exact 

relationship (5.31). 

Buckner [50] dealt with the 

problem of a single rectilinear 

crack emerging at the boundary of 

a circular cavity in an infinite 

body. There was no stress applied 

at infinity or at the edge of the 
Fig. 25. 

cavity, and there was no tangential 

stress applied to the surface of the crack, but normal stresses 

were applied symmetrically and varied according to an arbitrarily 

assigned law: p(x). Like Wigglesworth [85] (Bueckner's work was 

done independently), Bueckner proceeded from a singular integral 

equation for transverse displacement of points on the surface of 

the crack. He constructed a single-parameter family of particular 

solutions to this equation corresponding to certain special dis- 

tributions p (x). In the general case, he suggested that p(x) be 

represented in the form of a linear combination of p (x): 

PW    2«»M*) (5.37) 

The coefficients a were determined by the method of least squares 
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or by collocation. The coefficient of streea Intensity N0 at the 

end of the crack was represented by the coefficient a . 

If the length of the crack 

was much smaller than the radius 

of the round cavity, we obtain at 

the limit the particular case of a 

rectilinear boundary considered 

above. In this particular case, 

it follows from Buechner's calcula- 

Fig. 26. 

tions that when P = i p„ = const, the expression for the length of 

a mobile-equilibrium crack takes the form 

/ 2A'S 
0.15 o*L (5.38) 

which is in good agreement with (5.3^) and (5-36). 

In [36], Buechner also dealt with the problem of a crack emerg- 

ing at the surface of an infinitely long strip of finite width with 

an arbitrary load symmetrical with respect to the line of the crack 

(Pig. 25b). He showed that it is possible to replace the integral 

equation obtained in this case by an equation with a degenerate 

nucleus. Buechner's numerical solution for the particular case 

where the load is formed by couples with moments M applied to both 

sides of the crack at infinity gives the length of the mobile-equilib- 

rium crack as a function of load, as represented by the curve In 

Fig. 26. 

As we have already noted, mobile-equilibrium cracks are un- 

stable in all cases considered in this section. Thus, when the 

loads are Increased, the initial crack does not develop until it 

becomes a mobile-equilibrium crack, after which the body fails. 

Thus, in these problems, the load at which an initial crack becomes 

a mobile-equilibrium crack corresponds to the failure load, and this 
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generally speaking, does not occur. 

In the work by Wlnne and Wundt [32], some of the solutions 

presented In this section were used for calculation of the failure 

points of rotating notched disks and notched beams subjected to 

bending. The experiments conducted by Winne and Wundt, which were 

evaluated on the basis of these calculations, showed close agree- 

ment between the values of the aur-face-energy density T (or the 

modulus of cohesion K, which reduces to the same thing) determined 

from the angular velocity at which failure of the rotating notched 

disks occurred and that determined from the loads at which the 

notched beams failed when bent. This confirms that the quantities 

T and K are characteristics of the material and are independent 

of the type of stressed state. 

5. Cracks in the vicinity of the boundaries of the body. Crack 

systems. The development of cracks in bounded bodies has a number 

of charactex-istlc features. Difficulties of a mathematical nature 

make it impossible to conduct as exhaustive a study here as we 

did in the case of isolated cracks. However, the qualitative fea- 

tures and certain quantitative characteristics of this phenomenon 

can be completely investigated in the simplest problems that lend 

themselves to analytical solutions. Let us turn our attention first 

of all to the problem of a rectilinear crack in a strip of finite 

width (Fig. 27a). The crack is assumed to be symmetrical with re- 

spect to the centerline of the strip and the direction of its pro- 

pagation is normal to the free boundary. The load which keeps the 

crack open is assumed to be symmetrical about the line uf the crack 

and the centerline of the strip. 

In solving the problem, we use the method of successive ap- 

proximations developed by D.I. Sherman [86] and S.G. Mlkhlin [87]. 
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As a first approximation, we take the solution of the problem of 

elasticity theory dealing with the exterior of a periodic system 

of slits (Pig. 27b). Again denoting the distribution of fracture 

stresses which would obtain at 

the site of the cracks in a con- 

tinuous body under the same loads 

by p(x), we obtain an equation 

determining the half-length 1 of 

the mobile-equilibrium crank in 

Flg* 27'* the form 

\ „1/ ,/\i«/l"_ \n'M\yZ±7*   *}/%:>    «-■!»&•  »-•i»g       (5.39) 
— in 

In the particular case shown in Fig. 27, where the crack is 

kept open by equal and opposed concentrated forces P, whose points 

of application are located 2s apart along their common line of 

action, (3.39) takes the form 

ya (a"  11 MI, (a///.) ,   ,  . 
(5.40) 

L «(**+ l)m J 

where a - ch o/m, o = TS/2L. In particular, when s = 0 and the 

concentrated forces are applied to the surface of the crack, (5.4ü) 

can be represented in the following fashion: 

^ = /F^¥ (5.41) 
The dimension of a mobile-equilibrium crack, expressed as a 

function of load for a uniform tensile stress equal to P/2L at 

infinity has the form 

^f-VT^W (5.42) 

The relationship (5.4o) is shown in Fig. 28 for various values 

of a. As usual, the solid lines represent tne stable segments and 
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the dotted lines the unstable segments. As may be seen, when 

a >_ a    ~ 0.b>   the curves have no stable segments, so that when 

the distance between the points of application of the forces ex- 

ceeds 2L/T « 0.6*1 L, mobile-equilibrium cracks are always unstable. 

The study of the development of an isolated crack under proportional 

loading carried out in Section V, Paragraph 3 is completely analo- 

gous. The graph in Fig. 28 makes it possible to characterize com- 

pletely the development of any symmetrical initial crack with in- 

creasing load. 

The study which has been made 

was based on [58, 88]. The solution, 

of the problem of elasticity theory 

for s = 0 was obtained by Irwin 

[5^]. The solution of the problem of 

a periodic system of cracks under 

a uniform load at infinity was 

given by Westergaard [13], and 

independently by Koiter [89]. 

In using the first approxima- 

Fitr  28 &•   * tion, only the tangential stresses 

vanish on the linen of symmetry (represented in Fig. 27 by broken 

lines), which correspond to the edge of the strip, while the normal 

stresses differ from zero. In order to obtain the second approxima- 

tion, the first approximation is added to the solution of the prob- 

lem for a continuous strip at whose boundaries normal stresses 

are assigned with distribution such as to compensate the normal 

stresses obtained at the boundary in the first approximation. In 

this case, the boundary condition at the surface of the crack is 

no longer satisfied. To obtain the third approximation, the second 
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approximation Is added Lo the solution of the problem for the ex- 

terior of a periodic system of slits whose surface has an assigned 

normal-stress distribution equal to the difference between the 

assigned distribution and that obtained from the second approxi- 

mation, and so forth. 

Special evaluations [88] have shown that in the problem in 

point, consideration of the second and subsequent approximations 

for stable mobile-equilibrium states reduces to corrections of the 

order of 2.5-3% to the equations which interest us, so that we 

may limit ourselves to the first approximation. 

In addition to the problems presented above dealing with the 

periodic system of cracks and the system of radial cracks emerging 

at the boundary of a round cavity, several other problems of crack 

systems related to rectilinear cracks located along a single 

straight line have been treated. The mathematical methods developed 

by N.I. Muskhelishvili [90, 18], D.I. Sherman [91], and Westergaard 

[13] make it possible to reduce the problem of the development of 

any system of cracks of this type to computation of quadratures. 

We shall concern ourselves here with the simplest example of the 

development of a system of two eollinear rectilinear cracks of the 

same length In an Infinite body under tension at infinity by uni- 

form stresses p (Fig. 29). This problem was considered by Wilmore 

[21] and in the work of Winne and Wundt [32] (the authors of [32] 

refer to a particular report by Irwin). Wilmore's solution has in- 

accuracies in the initial presentation of the solution and these 

affected the fina] formulas. According to the solution given in 

[32], the dimensions of the cracks remain unchanged when p < p,, 

where 

■"' V  r .. ,:    ,—]• ■—T<»        (5.43) 
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When p = p,, the cracks reach 

an unstable mobile-equilibrium 

state, and the inner ends of the 

cracks then Join, forming a crack 

of length 2b. Further development 
Pig. 29. 

of the crack depends on whether 

the expression in braces is greater than or less than unity. If it 

is less than unity, which occurs when a < O.085, the dimension ob- 

tained after the inner ends of the crack join will be less than the 

dimension of the mobile-equilibrium crack corresponding to the load 

p., . In this case, the crack will remain unchanged until a load 

Pp = /J 2K/TT Y b is reached and the body will then fail. If the 

expression in braces is greater than unity, complete failure of 

the body takes place at once when a load p, is reached. Assuming 

b-a = 21 and going to the limit In (5.^3) with b —»-°°, we obtain 

(5.6), as might be expected. 

Reference [88] deals with the case where two identical cracks 

are kept open by concentrated forces applied to their surfaces. A 

complete study of the general case of symmetrical loading for a 

system of two cracks can be carried out in a manner completely 

analogous to the foregoing by using the expressions for the coef- 

ficients of stress intensity at the ends of the cracks x --  a and 

x = b. 

V- 

As may be seen from the examples wnich we have considered, 

collinear cracks are "weakened" by one another and reduce one 

another's Stability. Ya.B. Zel'dovich drew attention to the fact 
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that In the case of a "checkerboard" distribution of cracks (Fig. 

30), the converse effect occurred. As calculations have shown, mobile- 

equilibrium cracks can be stable even In the case of uniform normal 

loads on the surface of the cracks when they have a definite posi- 

tion relative to one another. 

Fig. 30. Fig. 31. 

We shall dwell briefly on the so-called "scale effect" in the 

brittle fracture of bounded bodies. Let us consider geometrically 

similar bodies (it is assumed that the macroscopic cracks present 

in these bodies are also geometrically similar) differing only in 

their characteristic dimensions d and their characteristic scales 

of applied fracture loads S. The quantity S = S0, which corresponds 

to failure of the body, depends, assuming that fracture is brittle, 

only on the characteristic dimension d of the body and the modulus 

of cohesion K. A dimensional characterization of S can be con- 

structed uniquely from the quantitites K and d, and it is impossible 

to construct any nondimensional combination. Simple relationships 

therefore hold for the magnitude of the fracture load: 

•V- ■*< ■-■■ ■     St     e3Kd '■ (5.^5) 

for the respective cases where S has the dimensions of force, force 

distributed along a line (as, for example, concentrated forces in 

plane deformation), and the dimensions of stress. The quantities 

e are constant for a given geometrical configuration of the body. 

At the present time, there is a great deal of experimental data on 
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the failure of geometrically similar bodies which make it possible 

to ascertain the limits of applicability of the theory of brittle 

fracture. In thin connection, similar information can be found in 

the article by Wundt [92], and some new results are given in the 

work by Yusuff [93] . 

6. Crackfl in rocks. For theoretical geology, considerable in- 
terest Is presented by research on the development of cracks in rock 
massifs. Cracks can be formed in these masses by various factors of 
tectonic character, as well as In consequence of a number of arti- 
ficial disturbances (mining, hydraulic splitting of strata, etc.). 

A number of problems in the theory of cracks have been considered 
in conjunction with the theory of the hydraulic splitting of petroleum- 
bearing strata. The vertical-crack problem consists in the following. 
A crack in an Infinite space compressed at infinity by a hydrostatic 
pressure is kept open by a viscous fluid pumped Into the crack (Fig. 
31). The basic feature of the problem is the fact that the fluid does 
not fill the crack completely: there is always a free section of the 
crack ahead of the wetted region. The fluid pressure pQ in the wetted 
region of the crack can be assumed constant in first approximation, 
since a sharp tapering of the crack occurs at the end of the wetted 
region and nearly the entire fluid-pressure gradient is lost at the 
end of the wetted region. The problem derives its name from the fact 
that the crack described in the problem under consideration is located 
in a vertical plane, while q Is the lateral pressure of the rock. In 
comparison with the effects of the lateral rock pressure and the 
fluid pressure, those of the cohesive forces can be neglected, as has 
been shown by the evaluations which have been made.* Equation (5-3), 
which determines the dimensions of the crack, takes the form 

- - -,/  (0   ,   :. 

From this we obtain 

i ^"/- o,  P(*)= i»"1  ST™        (5.46) 

(5.47) ' «-[-sr 
The expression for the maximum half-width v„ of the crack 

takes the form 

B(l  Y-) ;:.'.. , (5.^8) 
' „ - -  —r, 111 Clg , 

A;; the calculations show, with the values of V/l near unity 

that are usually encountered the aperture of the crack remains 

virtually constant over the entire extent of the wetted region of 
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of the crack; In the free section, the crack narrows rapidly. The 

vertical-crack problem was first formulated and solved in the work 

by Yu.P. Zheltov and S.A. Khrlstlanovlch [38]. 

The horizontal-crack problem [40] takes the following form. A 

horizontal discoid crack is formed in a heavy half-space at a cer- 

tain depth H, again by pumping a viscous fluid; the surface of 

the crack is again divided into wetted (0 < r < R„) and free (R~ < 

< r < R) parts; the fluid pressure p in the wetted part can be 

assumed constant. As in the preceding case, the cohesive forces 

are neglected. On the assumption that the depth of the crack H 

is sufficiently large, the boundary condition at the boundary of 

the half-space is disregarded. The finite-stress condition at the 

boundary of the crack gives in this case 

-~^--/R¥T (5.49) 
where y  is the specific gravity of the rock. For the volume of 

fluid pumped, we obtain the expression 

4(1 — v^pll»        li, 
i: *&)-^ = lJ[x-T--3iiT7CTj]    < 5.50 

Actually, z = R /R approximates unity, so that we can use 
o 

the asymptotic form of (5-50) 

The maximum half-width of the crack is determined by the for- 

mula 

8(1- V-|.nA\, ft0 v /(- c-n) 
i/;   - arccos ( .. t5-5^J 

Thus, knowing the depth at which the crack occurs, the fluid 

pressure, and the specific gravity of the rock being split, we can 

find Rn/R from (5.^9); from this and (5.51), knowing the total 

volume of pumped fluid V, we can obtain the radius R of the crack; 
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then the determination of the remaining crack parameters presents 

no difficulty. 

Reference [40, 4l] also dealt with problems of horizontal 

cracks In a radially-variable pressure field created by the over- 

lying rock. In this case, complete wetting of the crack surface 

can occur under certain conditions, i.e., this surface may have 

no free segment. 

Yu.P. Zheltov [43] indicated an approximate method of solving 

the horizontal-crack problem in a vertical-pressure field which 

varies along the radius. Comparison of the results of calculations 

obtained by this method with exact solutions for certain cases has 

shown completely satisfactory agreement. 

Using the method of successive approximations, Yu.A. Ustinov 

[94] evaluated the influence of the free boundary in the horizon- 

tal-crack problem. It was found that if the depth is greater than 

twice the radius of the crack, the influence of the free boundary 

is negligibly small. 

The problem of a crack formed by wedging a heavy space with 

a horizontal wedge of constant thickness is considered in [39] in 

conjunction with the problem of roof settling in mining stopes. 

Yu.P. Zheltov [42] generalized the solution of tne vertical- 

crack problem to the case where the rock being split is permeable 

and the pumping fluid is filtering through the rock. 

VI. Wedging. Dynamic Problems of the Theory of Cracks. 

1. Wedging an infinite body. By wedging, we mean the forma- 

tion of a crack In a solid body by the Insertion of a rigid wedge 

into it. The most characteristic property of the wedging of a brittle 

body is the fact that the surface of the wedge is never in complete 

contact with the body: there is always a free segment at the front 
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of the wedge and an open crack is formed ahead of it, meeting at 

at some distance from the foremost point of the wedge (Fig. 32). 

The problem of wedging an in- 

finite body with a stationary wedge 

[39, 58, 95] is, to all appearances, 

the simplest formulation of this 

type of problem; it can be effec- 

tively and exactly solved by the 

methods of elasticity theory and 

permits us to draw qualitative in- 

Fig.. 32. ferences as to wedging under more 

complex conditions. 

Thus, let a uniform Isotropie brittle body be wedged by a thin, 

symmetric, absolutely hard semifinite wedge having a thickness 2h 

at infinity (Pig. 32). An open crack is formed in front of the 

wedge and unites smoothly at a certain point 0; the positiun of 

point 0 relative to the foremost point of the wedge C is unknown 

beforehand and must be determined during solution of the problem. 

If the wedge has a rounded point (Fig. 32a), the position of the 

points B and B' at which the wedge makes contact with the surface 

of the crack are unknown beforehand and must also be determined 

during solution of the problem. If, on the other hand, the wedge 

has a truncated point (Fig. 32b) as, for example, in the case of 

a wedge of uniform thicKness, the position of the points at which 

the wedge makes contact with the surface of the crack are fully 

determined and correspond Lu the corners at the front of the wedge. 

However, it is obvious that the stresses at the points of con- 

tact are infinite in this case. Let us assume at first that the 

frictional forces at the contact surface between the wedge and the 
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body being wedged equals zero. 

On the exterior of the crack, the field of elastic stresses 

and strains satisfies the ordinary equations of static elasticity 

theory. Because of the assumption made earlier that the wedge is 

thin, wo can carry the boundary conditions along the entire surface 

of the crack to the slit ZBOB'A'. Without considering the cohesive 

forces, the boundary conditions are represented in the form 

3V1/--• o, o,, - 0   I,I- *</,. i/_o) (6-1) 

''  ±/(2 — h),  <5iU = 0     (/,  *<oo, y=0) 

Here o and a  are the components of the stress tensor: 1, 
y     *y -1 

and Iry  are the distances from the point at which the cracK joins 

to the tip of the wedge and to the points of contact between the 

surface of the cracK and the wedge, respectively; f(t) is a func- 

tion which determines the equation of the surface of the wedge in 

a syscem of coordinates which has its origin at the tip of the 

wedge, i.e., the function which determines the shape of the wedge; 

the plus and minus signs correspond to the upper and lower faces 

of the slit. 

As may be r.een, the problem of wedging is a kind of combina- 

tion of the contact problem of elasticity theory [18, 72, 73] and 

the problem of crack theory. 

The position of the points of contact between the surface of 

the crack and the wedge when the wedge has a rounded front edge and 

the position of the points at which the crack closes relative to 

the tip of the wedge are determined from the following two condi- 

tion.' . 

1st. The stresses at the points of contact between the surface 

of the crack and the wedge must be finite. For the contact problem, 

an analogous condition was first proposed in the form of a hypothesis 
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by M.I. MUBkhiliohvili [96, 18] and A.V. Dltaadze [97]; Lt Ls proven 

in [61]. 

2nd. The stresses at the end of the crack are finite, or, 

what is the same thing, smooth union of the opposing faces of the 

crack occurs at its end. Since the intensity of cohesive forces at 

the end of the crack is at maximal  the stresses in the vicinity 

of the end of the crack, calculated without consideration of the 

cohesive forces, should go to infinity according to (4.8). 

The problem of wedging is a mixed problem of elasticity 

theory. To solve it, it is convenient to consider the singular 

integral equation for the compressive forces at the sides of the 

wedge being driven in: a = -$(x). When 4>(x) is known, determina- 

tion of the field of elastic elements obviously leads to the solu- 

tion of the first boundary problem of elasticity iheory for the 

region surrounding a semiflnite rectilinear slit, and this can be 

carried out by Muskhelishvili's method ([18], §95). This solution 

yields an expression for the transverse displacements at the point 

of contact between the wedge and the surface of the crack: 

"-ilTSaj«W«ta|j2±J|*i (6.2) 

where C = ju  x, where the root takes both positive and negative 

values, giving the shears of the upper and lower faces of the notch, 

respectively. The second condition in (6.1) yields the basic inte- 

gral equation for this problem: 

[o^flln|l±^|d«-±Tn2^ir/(;._i1)       (6.3) 

which, äü iiici.y be shown, is equivalent to the singular integral 

equation obtained from (6.3) by differentiating it with respect 

to C: 

\     c-c "±2(l-*)W (f-*i) (b.4) 
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and to the condition 

0 (:r) - 2n(l-vi>, + ° (*"")    for x - - .  (6.5) 

where h ■ f (°°) . Using the methods of solving singular Integral 

equations developed in the monograph by N.I. Muskhellshvili [19l> 

the solution to equation (6.4) can be obtained in the form 

.D (,) . _* — N A [ rit-UVtlt-ü    i (6.6) 
a/x(x-_/.,)l   2(1 -v*)>     T=^c «J      v   ' 

Here A is an as yet indeterminate constant. The integral in 

(6.6) is known to exist because of the finite f(°°) = h and goes 

to zero when x -► °°, and from this and (6.5) we obtain a value for 

the constant A 

/■;/, (6.7) 
2(1-V«) 

For finite stresses at the points of departure x = 1_„ in the 

case of a wedge with a rounded end, it is necessary and sufficient 

that the expression in bracKets in (6.6) go to zero when x * l». 

This yields the first of the equations for determining 1, and 1_: 

i'  - W (/-/,)l/^^ (6.8) 
i, 

Further, from this solution we obtain the following expres- 

sion for the tensile stresses along the extension of the slit: 

s   —   -M-  j' ;, , i   ni~ix)V'tu-it)iii I    (6.9) 
^(I-v*)/ (/.-.Ml  7)  ■   L     } t=Z J 

From this and from (4.1 ) we obtain 

/,-\7c-/;)■/' /- a    -^~;.L=Lr)      (6.io) 

The relationships (6.8) and (6.10) are terminal equations 

which determine the unknown constants 1. and 1_0 which enter into 

the solution. 
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In the particular case where the thickness of the wedge Is uni- 

form, f(t) s h, Condition (6.8), which no longer holds true, is re- 

placed by the relationship 1 -  1_, while (6.10) gives the follow- 

ing expression for the length of the open crack in front of the 

wedge which is being driven in: 

Other particular wedge shapes are also considered in [9?]: 

a wedge with a small curvature at its tip and a wedge with a power- 

law curvature. Study of the first of these examples has shown that 

a small curvature has a small effect on the length of the open 

crack in front of the wedge. Reference [95] also studied the case 

where dry-friction forces act on the faces of the wedge. 

Fig. 33. Fig- 34. 

Reference [84] studied wedging of an anisotropic body by a 

semiinfinite hard wedge. 

I.A. Marcuson [98] considered the problem of wedging of an 

infinite body by a wedge of finite length 2b (Fig. 33). In the 

case of constant wedge thickness 2h, the crack length 21_ as a func- 

tion of the wedge length 2b takes the form, all other conditions 

the same, shown in Fig. 34 (l~ is the length of the open crack for 

an infinite wedge, as given by (6.11)). 

Reference [95] also Investigated the effect of a uniform com- 

pressive or tensile stress applied at infinity on the lengtn of the 
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open crack formed by wedging a body with a wedge of finite length. 

The relationship (6.11) can be used for experimental determina- 

tion of the coefficient of cohesion K. In order to accomplish this, 

a wedge made of a material substantially harder than the material 

being tested is driven into the latter and the length L of the open 

crack thus formed is measured. The modulus of cohesion can then be 

determined by the formula 

K       ^__ (6.12) 
2(1 Y", fi 

The wedge should be sufficiently long so that the boundary of 

the plate will have no influence; actually, the wedge should be 

driven in until the distance between the end of the wedge and the 

Fig. 35. Pig. 36. 

end of the crack is not changed by further motion of the wedge. The 

plate should be wide and thick enough so that its stressed state 

can be assumed to correspond to plane deformation. In addition, in 

order to ensure that the crack is rectilinear, it is necessary to 

compress the specimen in the direction of crack propagation, as is 

recommended in the work by Benbow and Roesler [9]. (it can be shown 

that in tnis case, (6.11) and (6.12) remain unchanged.) 

2. Wedging a strip. In its rigorous formulation, the solution 

of the problem of wedging bounded bodie-    very difficult. There 

are only a few approximate solutions based on the use of the approxi- 

mations of the simple theory of beams. 
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The first such solution was obtained by I. V. Obrelmov [8]; 

this work was the very first study In which wedging was considered. 

In conjunction with the experiments which he conducted on the cleav- 

age of mica, I.V. Obrelmov dealt with the case where the strip being 

removed is thin and in contact with the wedging body at only one 

point (Pig. 35). In order to establish a connection between the 

surface tension of the mica and the shape parameters of the crack, 

I.V. Obrelmov applied the methods -of the strength of materials to 

this problem, regarding the chip as a thin beam. The theoretical 

part of the work by I.V. Obrelmov was not free of errors; V.D. 

Kuznetsov [99] subsequently refined the calculations of this work 

in his book, as did M.S. Metsik [10] and N.N. Davidenkov [12] in 

their reports. M.S. Metsik also brought more precision to the ex- 

perimental method of [8]. The use of the approximations of the 

theory of thin beams was justified in certain cases for determining 

the length of a crack. However, these approximations could not be 

admitted when describing the shape of a crack surface in the im- 

mediate vicinity of its end, even when the distribution of cohesive 

forces in the terminal region was explicitly included in the examina- 

tion, as was done by Ya.I. Frankel [5]. This was due to the fact 

that the length of the terminal region cannot be considered great 

in comparison with the thickness of the chip, so that the chip 

cannot be regarded as a thin beam in the region where cohesive 

forces act. 

To illustrate the approximate approach based on the methods 

of the simple theory of beams, let us dwell In more detail on the 

work of Benbow and Roesler [9]. We should note that this work ex- 

plains most clearly the possibilities and limits of applicability 

of this approach. 
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The work deals with a problem formulated in the following form 

(Fig. 36). A strip of finite width b is wedged symmetrically, so 

that the crack opens up along the centerline of tne strip. A eom- 

pressive force Q/2 IS applied to the cut end of the strip in order 

to ensure rectilinear crack propogation; the wedging force P creates 

a crack of length 1 and Initial width h. 

Obtaining an expression for the elastic energy from dimensional 

considerations, the authors write the equilibrium condition of the 

crack in the form 

T-T*(-T) (6-13) 
o 

so that, for a given material, the magnitude of h /l  should be 

uniquely determined by the quantity b/l. The experiments described 

in [9], which were carried out on specimens of two different plas- 

tics, conclusively demonstrated the existence of such a single- 

valued relationship. 

For small values of b/l, i.e., for long cracks, it is possible 

to obtain an asymptotic form of the relationship (6.13) by con- 

sidering both halves of the strip being wedged as thin beams em- 

bedded in a section corresponding to the end of the crack. In this 

case, the expression for the elastic energy of the strip takes the 

form 

U(h,i) = ^L (6.14) 

Here B = El, the rigidity of the beam, I ■ nbJ/96, and n is 

the transverse thickness of the beam. The surface energy of tne 

crack is obviously equal to 2Tnl. Tn a mobile-equilibrium state, 

the variations in surface energy corresponding to small variations 

6l in the length of the crack equal the corresponding variations in 

the elastic energy of the strip, from which we obtain 
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Comparing the second formula in (6.15) with (6.13), we can find 

the asymptotic expression for <t>(b/l) for b/l -* 0 

<j>« J ( i' v (6.1.6) 
04 \~r) 

From (6.15) we obtain the expression for the length of the 

crack in the form 

i,faHy y^f»w** y« (6 I?) 4 V öl v ; Vü4K«(l- v«)J iu • -L u 

As may be seen the length of the crack in this case is pro- 

portional only to J h, whereas the length of the crack (cf. (6.11)) 
2 

is proportxonal to h in wedging of an infinite body with a semi- 

infinite wedge. 

The relationship (6.15) was used by Benbow and Roesler to 

determine the surface energy density in the plastics studied. We 

should note the great care exercised in the experimental study 

carried out in this work and the scrupulous appraisal of sources 

of possible error and their magnitudes. 

In a recent survey by Gilman [11] we can find a detailed sum- 

mary and bibliography of experimental studies of wedging. 

3. Dynamic problems of the theory of cracks. Recently, prob- 

lems of the dynamics of cracks have attracted considerable attention. 

A detailed treatment of these problems falls outside the scope of 

this survey and we shall thus limit ourselves here to a brief sum- 

mary of the basic results achieved in theoretical research on the 

dynamics of cracks. 

The work by Mott [36]deals with the widening process of an 

isolated rectilinear crack in an infinite body under the action of 

a uniform field* of tensile stresses p0- On the basis of dimensional 

analysis, Mott obtained an expression for the kinetic energy of 
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of the body: 

.  /.-p/TV (6.18) 

Here p is the density of the body, 1  is the half-length of 

the crack, V is the rate of expansion of the crack, and k is a 

dimensionless multiplier which Mott considered to be constant and 

left  indeterminate.  Complementing the static energy equation (2.1) 

with the derivative of the kinetic energy thus determined with re- 

spect to the lengtn 1 of the crack, and assuming that the remaining 

terms in (2.1) retain the same form as in the static problem of 

Griffiths, Mott found the rate of crack expansion: 

V-[S^]>(JLf(t-Jfi (6.19) 

where 1# is the critical half-length of the crack as determined 

by (5-6). Thus, as the crack propagates, the rate of its expansion 

increases, tending to a limit 

so that the limiting velocity, according to Mott, represents a 

definite fraction of the velocity of longitudinal-wave propagation. 

In this discussion, the use of the static expression for the 

decrease in the elastic energy W remains ungrounded. In addition, 

the quantity k in (6.l8) and (6.19), generally speaking, need not 

be constant: it may depend on 1/  l_x, V/e,, and other nondimensional 

combinations. 

In an exact formulation of the dynamic theory of elasticity, 

Yoffe [100] studied the problem of a rectilinear crack of constant 

length moving with a constant velocity in an infinite body under 

tension at infinity by a uniform stress. Despite some artificiality 

in the formulation of the problem, an important result  of quite 

general significance was obtained from this work. Precisely, it 
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was found that if the velocity of crack propagation becomes greater 

than a certain critical velocity, the direction of crack propaga- 

tion ceases to be the direction of maximum fracture stress and the 

crack begins to deflect. The magnitude of ehe critical velocity 

V-, is approximately 0.4 c., where c, is the velocity of longitudinal 

wave propagation in the given material (the ratio V-Vc-, is virtually 

independent of the Poission's ratio v of the material). 

Roberts and Wells [101] made an attempt to evaluate the con- 

stant k which remained indeterminate in Mott's work. Using the 

value found for this constant, they obtained a limiting crack-pro- 

pagation velocity which approximated that found by Yoffe. However, 

their evaluation, which was based on a solution to the static prob- 

lem of elasticity theory, is too coarse. Since the rectilinear 

propagation of a crack was assumed to be definitely ensured in 

[101], the close agreement of the critical velocity found by Yoffe 

[100] with the limiting velocity found in [101], must be regarded 

as accidental. 

If the rectillnearity of crack propagation is ensured in some 

manner (for example, by powerful compression of the body in the 

direction of crack propagation or by anisotropy of the material), 

the maximum velocity of crack propagation corresponds to the velo- 

city of propagation of Rayleigh surface waves in the material under 

consideration and is approximately 0.6 c, . 

The first to affirm that the limiting velocity of crack propa- 

gation corresponds to the Rayleigh value was Stroh [102]. The heuris- 

tic proof given In this work reduces to the following. Noting cor- 

rectly that the limiting velocity of crack propagation does not 

depend on the surface energy of the body, Stroh assumed a zero sur- 

face energy. Proceeding from this on the basis of energy considera- 
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tlons, Stroh came to the conclusion that the tensile stresses near 

the end of the crack were zero on Its extension, so that crack pro- 

pagation Is a disturbance moving along a surface free of stress and 

capable of propagating only at the Rayleigh velocity. Actually, it 

Is possible to conclude from Stroh's discussion only that the ten- 

sile stress at the very contour of the crack equals zero. However, 

the equality of crack-propagation velocity to the Rayleigh velocity 

does not, follow from this fact, as shown by the following simple 

example. Let us take a body compressed at infinity by a hydrostatic 

compressive stress and wedged by a semiinfinite wedge (Fig. 32) 

moving at an infinitesimally small velocity. The cohesive forces 

and consequently, the surface energy are assumed to be zero. Be- 

cause of the Infinitesimally snail velocity of the wedge, the dynamic 

effects are nonessential, so that, in accordance with Section III, 

Paragraph 2, we may assert that the tensile stress at the end of 

the crack; equals zero. At the same time, the crack-propagation velo- 

city equals the velocity of the wedge, i.e., is also infInitesimally 

small. 

By a chain of reasoning based on analysis of exact solutions 

to the equations of the dynamic theory of elasticity, the conclusion 

as to the equality of the limiting velocity of crack propagation to 

the Rayleigh velocity was obtained independently and simultaneously 

by several authors. Craggs [103] dealt with the steady-state propa- 

gation of a semiinfinite rectilinear crack to the part to whose sur- 

face adjoining the edge symmetrically distributed normal and tan- 

gential stresses were applied. The report by An Dang Ding [104] was 

concerned with a nonstationary field of stresses and strains in an 

infinite body wJth a semiinfinite crack along whose surface normal 

symmetrical concentrated forces begin to move at constant velocity, 

- 9h - 



from the edge Inward, at the initial point in time. Reference [95] 

deals with wedging of an Infinite, Isotropie brittle tody by a semi- 

infinite hard wedge of arbitrary shape moving with constant velo- 

city. In [84], an analogous problem Is studied for an anlsotropic 

body. Baker [ 105] dealt with a nonstationary distribution of stresses 

and strains in a solid containing a semlinflnlte crack to whose sur- 

face a constant normal stress is applied at tne initial moment, 

whereupon the crack begins to propagate with constant velocity. 

In the entire diversity of problems considered in these studies, 

the following general result, which served as the basis for the 

formulation of the conclusions given above, was obtained: as the 

characteristic velocity inherent to the problem approaches the 

Rayleigh velocity, a peculiar resonance phenomenon intervenes. Let 

us note that the appearance of reasonance on the approach to the 

Rayleigh velocity is not specific to the problem of cracks: investi- 

gation of the problem of a punch moving along the boundary of a 

half-space, which was considered by L.A. Galin [72] and Radok [106], 

has disclosed [95] that the same resonance phenomena arise as the 

punch velocity approaches the Rayleigh velocity. Apparently, the 

limiting character of the Rayleigh velocity is most directly demon- 

strated in the problem of wedging. It is obvious that the maximum 

possible crack propagation velocity can be achieved when the body 

is wedged by a moving wedge. Analysis of this problem has shown [95] 

that, with Increasing wedge velocity, the length of the open crack 

in front of the wedge decreases, going to zero on the approach to 

the Rayleigh velocity. Thus, when the wedge muves with a velocity 

exceeding the Rayleigh velocity, no open crack is formed in front 

of it; fron tills it follows that the maximum velocity with which 

a crack can propagate equals the Rayleigh velocity. 

- 95 - 



Broberg [107, 10b] dealt with the problem of a uniformly ex- 

panding crack of finite length in an Infinite body subject to a uni- 

form tensile-stress field. The solution obtained by Broberg is an 

asymptotic representation of the solution to the problem dealt with 

by Mott [36] and Roberts and Wells [101] for large time values. How- 

ever, in contrast bo References [36, 101], Broberg's solution was 

obtained on the basis of the exact methods of dynamic elasticity 

theory. Independently of [102-104, 57, 95, 1051 and in complete 

agreement with the results presented in these works, Broberg found 

that the velocity of crack expansion in his problem equalled the 

limiting velocity of crack propagation for the problem considered 

in [36, 101] and corresponded tc the Rayleigh velocity. 

Let us note the works by Bilby and Bullough [109], McClintock 

and Suknatrne [110], which dealt with uniformly moving cracks of 

finite and infinite length to whose surface symmetrical tangential 

stresses parallel to the edge of the crack were applied. In this 

problem, so-called "antiplane deformation" occurred instead of plane 

deformation when only one dislocation component, that parallel to 

the edge of the crack, differed from zero. Investigations of such 

cracks lead to solution of one wave equation (the LaPlace equation 

for equilibrium cracks). Cracks formed under conditions of anti- 

plane deformation are of considerable interest as the simplest model 

for which an effective solution is possible for many problems in- 

soluble for cracks formed under conditions of plane deformation be- 

cause of the great mathematical difficulties involved. 

An analysis of the dynamics of crack propagation based on the 

approximation of the simple theory of beams was made by Gilman [11] 

and Guits [111] . 

Received 28 April 1961. 
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[Footnote:; | 

Manu- 
script 
Page 
No. 

8     *Sh.A. Sergaziyev made a very good comparison between 

cracks which satisfy this assumption and the popular 

"molniya" [lightning; zipper] fasteners. 

10     *A completely analogous situation arises when the body moves 

along a rough horizontal surface under the action of a 

horizontal force. The body begins to move only after the 

force exceeds the maximum i'orce of friction possible for 

the body and surface in question. 

20     * These general formulations of the problem are useful, de- 

spite the fact that their general solution in effective 

form is far beyond the capabilities of contemporary mathe- 

matics. The existence of general presentations of the prob- 

lem helps to clarify the importance of specific concrete 

solutions and of the difficulties arising in the develop- 

ment of the theory. 

24     *In addition to these basic defects, [5] contains the errors 

ii calculation noted in [37]. 

In its most general form, this convenient method of re- 

ducing the load to a load distributed over the fracture 

surface was originated by Bueckner [33]. 

35      *In the work by M.Ya. Leonov and V.V. Panasyuk [69, 70], 

the function f(y) was approximated by a broken line and 

this approximation was used as a basis for formulation of 

a linear integral equation for the normal displacements 

of points on the surface of the crack. This integral equa- 

tion was then solved approximately, with a rather unfor- 
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I 
tunate choice of the approximate representation of the 

solution, so that the shape of the cracK at its end proved 

to be wedge-shaped with a finite end angle. Actually, as 

was shown above, the terminal angle is necessarily zero. 

Another shortcoming of these studies was the application 

of results obtained by methods of the mechanics of con- 

tinuous media to cracks whose length was of the order of 

several interatomic distances. 

For example, points on the contours of nonwidcning notches 

or points on the contours of cracks produced on a decrease 

in load from cracks that existed under large loads. 

57      *Let us note that, actually, because of the dynamic effects 

involved in the expansion of the Initial notch, the crack can 

"jump" somewhat on passage through the stable equilibrium 

state. For more detail on this, see below. 

57     **The integrals were computed and the numerical calculations 

made for the curve in Fig. 20 by V.Z. Parton and Ye.A. 

Morozova. 

64 *lf the crack is irreversible, the increase in its size 

produces no reverse closure, but further crack growth 

does not occur either. In this case, equilibrium is reached 

through a decrease in the cohesive forces acting in the 

terminal region of the crack. 

65 ^Because of the dynamic effects which arise in this transi- 

tion, the crack may expand until it reaches a size whicn 

' somewhat exceeds the size of the stable mobile-equilibrium 

crack corresponding to the load in question (apparently, 

just this phenomenon occurred in the experiments described 

in [52]). In this case, a further increase in load pro- 
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duces no change In the length of the crack until the In- 

stant when It becomes a mobile-equilibrium crack, where- 

upon it continues to expand. It La natural that the purely 

static theory under consideration cannot describe these 

dynamic effects; the corresponding segments of the graph 

in Fig. 21a are represented by the broken line and keyed 

1! . 

80      *The condition for negligibly small cohesive forces will 

be K/q Jl  in laboratory simulation. 1. Generally speak- 

ing, it will not be satisfied in laboratory simulation. 

91      *In contrast to [36], we shall consider here plane deforma- 

tion and not tne plane stressed state. 
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